Suppr超能文献

基于多类支持向量机的现实癫痫发作预测研究

A Realistic Seizure Prediction Study Based on Multiclass SVM.

作者信息

Direito Bruno, Teixeira César A, Sales Francisco, Castelo-Branco Miguel, Dourado António

机构信息

1 Institute for Biomedical Imaging and Life Sciences, Faculty of Medicine, University of Coimbra Coimbra, Portugal.

2 Department of Informatics Engineering, University of Coimbra, Portugal.

出版信息

Int J Neural Syst. 2017 May;27(3):1750006. doi: 10.1142/S012906571750006X. Epub 2016 Sep 23.

Abstract

A patient-specific algorithm, for epileptic seizure prediction, based on multiclass support-vector machines (SVM) and using multi-channel high-dimensional feature sets, is presented. The feature sets, combined with multiclass classification and post-processing schemes aim at the generation of alarms and reduced influence of false positives. This study considers 216 patients from the European Epilepsy Database, and includes 185 patients with scalp EEG recordings and 31 with intracranial data. The strategy was tested over a total of 16,729.80[Formula: see text]h of inter-ictal data, including 1206 seizures. We found an overall sensitivity of 38.47% and a false positive rate per hour of 0.20. The performance of the method achieved statistical significance in 24 patients (11% of the patients). Despite the encouraging results previously reported in specific datasets, the prospective demonstration on long-term EEG recording has been limited. Our study presents a prospective analysis of a large heterogeneous, multicentric dataset. The statistical framework based on conservative assumptions, reflects a realistic approach compared to constrained datasets, and/or in-sample evaluations. The improvement of these results, with the definition of an appropriate set of features able to improve the distinction between the pre-ictal and nonpre-ictal states, hence minimizing the effect of confounding variables, remains a key aspect.

摘要

提出了一种基于多类支持向量机(SVM)并使用多通道高维特征集的针对癫痫发作预测的患者特异性算法。这些特征集与多类分类和后处理方案相结合,旨在生成警报并减少误报的影响。本研究纳入了来自欧洲癫痫数据库的216名患者,其中包括185名有头皮脑电图记录的患者和31名有颅内数据的患者。该策略在总共16729.80[公式:见正文]小时的发作间期数据上进行了测试,其中包括1206次发作。我们发现总体灵敏度为38.47%,每小时误报率为0.20。该方法的性能在24名患者(占患者总数的11%)中具有统计学意义。尽管先前在特定数据集中报告了令人鼓舞的结果,但对长期脑电图记录的前瞻性论证仍然有限。我们的研究对一个大型异质性多中心数据集进行了前瞻性分析。基于保守假设的统计框架,与受限数据集和/或样本内评估相比,反映了一种现实的方法。通过定义一组合适的特征来改善发作前和非发作前状态之间的区分,从而最小化混杂变量的影响,以改善这些结果仍然是一个关键方面。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验