Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal.
Epilepsy Centre, Medical Centre, Department of Neurosurgery, University of Freiburg, Freiburg, Germany.
Sci Rep. 2023 Jan 16;13(1):784. doi: 10.1038/s41598-022-23902-6.
Typical seizure prediction models aim at discriminating interictal brain activity from pre-seizure electrographic patterns. Given the lack of a preictal clinical definition, a fixed interval is widely used to develop these models. Recent studies reporting preictal interval selection among a range of fixed intervals show inter- and intra-patient preictal interval variability, possibly reflecting the heterogeneity of the seizure generation process. Obtaining accurate labels of the preictal interval can be used to train supervised prediction models and, hence, avoid setting a fixed preictal interval for all seizures within the same patient. Unsupervised learning methods hold great promise for exploring preictal alterations on a seizure-specific scale. Multivariate and univariate linear and nonlinear features were extracted from scalp electroencephalography (EEG) signals collected from 41 patients with drug-resistant epilepsy undergoing presurgical monitoring. Nonlinear dimensionality reduction was performed for each group of features and each of the 226 seizures. We applied different clustering methods in searching for preictal clusters located until 2 h before the seizure onset. We identified preictal patterns in 90% of patients and 51% of the visually inspected seizures. The preictal clusters manifested a seizure-specific profile with varying duration (22.9 ± 21.0 min) and starting time before seizure onset (47.6 ± 27.3 min). Searching for preictal patterns on the EEG trace using unsupervised methods showed that it is possible to identify seizure-specific preictal signatures for some patients and some seizures within the same patient.
典型的癫痫发作预测模型旨在区分癫痫发作间期的脑活动与癫痫发作前的脑电图模式。由于缺乏癫痫发作前的临床定义,广泛使用固定间隔来开发这些模型。最近的研究报告了在一系列固定间隔中选择癫痫发作前间隔,显示了患者内和患者间癫痫发作前间隔的可变性,这可能反映了癫痫发作过程的异质性。获得癫痫发作前间隔的准确标签可用于训练有监督的预测模型,从而避免为同一患者内的所有癫痫发作设置固定的癫痫发作前间隔。无监督学习方法在探索癫痫发作特异性尺度上的癫痫发作前改变方面具有很大的潜力。从 41 名接受手术前监测的耐药性癫痫患者的头皮脑电图 (EEG) 信号中提取了多元和单变量线性和非线性特征。对每组特征和 226 次癫痫发作中的每一次进行了非线性降维。我们应用了不同的聚类方法来寻找位于癫痫发作前 2 小时内的癫痫发作前簇。我们在 90%的患者和 51%的视觉检查的癫痫发作中确定了癫痫发作前的模式。癫痫发作前的簇表现出具有不同持续时间 (22.9±21.0 分钟) 和起始时间 (47.6±27.3 分钟) 的癫痫发作特异性特征。使用无监督方法在 EEG 迹线上搜索癫痫发作前模式表明,对于一些患者和同一患者内的一些癫痫发作,有可能识别出具有癫痫发作特异性的癫痫发作前特征。