Suppr超能文献

无监督脑电图癫痫发作间期识别在耐药性癫痫患者中的应用。

Unsupervised EEG preictal interval identification in patients with drug-resistant epilepsy.

机构信息

Centre for Informatics and Systems of the University of Coimbra, Department of Informatics Engineering, University of Coimbra, Coimbra, Portugal.

Epilepsy Centre, Medical Centre, Department of Neurosurgery, University of Freiburg, Freiburg, Germany.

出版信息

Sci Rep. 2023 Jan 16;13(1):784. doi: 10.1038/s41598-022-23902-6.

Abstract

Typical seizure prediction models aim at discriminating interictal brain activity from pre-seizure electrographic patterns. Given the lack of a preictal clinical definition, a fixed interval is widely used to develop these models. Recent studies reporting preictal interval selection among a range of fixed intervals show inter- and intra-patient preictal interval variability, possibly reflecting the heterogeneity of the seizure generation process. Obtaining accurate labels of the preictal interval can be used to train supervised prediction models and, hence, avoid setting a fixed preictal interval for all seizures within the same patient. Unsupervised learning methods hold great promise for exploring preictal alterations on a seizure-specific scale. Multivariate and univariate linear and nonlinear features were extracted from scalp electroencephalography (EEG) signals collected from 41 patients with drug-resistant epilepsy undergoing presurgical monitoring. Nonlinear dimensionality reduction was performed for each group of features and each of the 226 seizures. We applied different clustering methods in searching for preictal clusters located until 2 h before the seizure onset. We identified preictal patterns in 90% of patients and 51% of the visually inspected seizures. The preictal clusters manifested a seizure-specific profile with varying duration (22.9 ± 21.0 min) and starting time before seizure onset (47.6 ± 27.3 min). Searching for preictal patterns on the EEG trace using unsupervised methods showed that it is possible to identify seizure-specific preictal signatures for some patients and some seizures within the same patient.

摘要

典型的癫痫发作预测模型旨在区分癫痫发作间期的脑活动与癫痫发作前的脑电图模式。由于缺乏癫痫发作前的临床定义,广泛使用固定间隔来开发这些模型。最近的研究报告了在一系列固定间隔中选择癫痫发作前间隔,显示了患者内和患者间癫痫发作前间隔的可变性,这可能反映了癫痫发作过程的异质性。获得癫痫发作前间隔的准确标签可用于训练有监督的预测模型,从而避免为同一患者内的所有癫痫发作设置固定的癫痫发作前间隔。无监督学习方法在探索癫痫发作特异性尺度上的癫痫发作前改变方面具有很大的潜力。从 41 名接受手术前监测的耐药性癫痫患者的头皮脑电图 (EEG) 信号中提取了多元和单变量线性和非线性特征。对每组特征和 226 次癫痫发作中的每一次进行了非线性降维。我们应用了不同的聚类方法来寻找位于癫痫发作前 2 小时内的癫痫发作前簇。我们在 90%的患者和 51%的视觉检查的癫痫发作中确定了癫痫发作前的模式。癫痫发作前的簇表现出具有不同持续时间 (22.9±21.0 分钟) 和起始时间 (47.6±27.3 分钟) 的癫痫发作特异性特征。使用无监督方法在 EEG 迹线上搜索癫痫发作前模式表明,对于一些患者和同一患者内的一些癫痫发作,有可能识别出具有癫痫发作特异性的癫痫发作前特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4131/9842648/f541994fc27f/41598_2022_23902_Fig1_HTML.jpg

相似文献

1
Unsupervised EEG preictal interval identification in patients with drug-resistant epilepsy.
Sci Rep. 2023 Jan 16;13(1):784. doi: 10.1038/s41598-022-23902-6.
3
Unsupervised Clustering of HRV Features Reveals Preictal Changes in Human Epilepsy.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:698-701. doi: 10.1109/EMBC44109.2020.9175739.
4
Preictal Time Assessment using Heart Rate Variability Features in Drug-resistant Epilepsy Patients.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:6776-6779. doi: 10.1109/EMBC.2019.8857897.
5
Identifying signal-dependent information about the preictal state: A comparison across ECoG, EEG and EKG using deep learning.
EBioMedicine. 2019 Jul;45:422-431. doi: 10.1016/j.ebiom.2019.07.001. Epub 2019 Jul 9.
6
Preictal dynamics of EEG complexity in intracranially recorded epileptic seizure: a case report.
Medicine (Baltimore). 2014 Nov;93(23):e151. doi: 10.1097/MD.0000000000000151.
7
Focal Onset Seizure Prediction Using Convolutional Networks.
IEEE Trans Biomed Eng. 2018 Sep;65(9):2109-2118. doi: 10.1109/TBME.2017.2785401. Epub 2017 Dec 25.
8
Predicting temporal lobe epileptic seizures based on zero-crossing interval analysis in scalp EEG.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:5537-40. doi: 10.1109/IEMBS.2010.5626764.
9
Seizure forecasting using minimally invasive, ultra-long-term subcutaneous electroencephalography: Individualized intrapatient models.
Epilepsia. 2023 Dec;64 Suppl 4(Suppl 4):S124-S133. doi: 10.1111/epi.17252. Epub 2022 Apr 16.
10
On the proper selection of preictal period for seizure prediction.
Epilepsy Behav. 2015 May;46:158-66. doi: 10.1016/j.yebeh.2015.03.010. Epub 2015 May 3.

引用本文的文献

1
Automated algorithms for seizure forecast: a systematic review and meta-analysis.
J Neurol. 2024 Oct;271(10):6573-6587. doi: 10.1007/s00415-024-12655-z. Epub 2024 Sep 6.

本文引用的文献

1
Multiple mechanisms shape the relationship between pathway and duration of focal seizures.
Brain Commun. 2022 Jul 6;4(4):fcac173. doi: 10.1093/braincomms/fcac173. eCollection 2022.
2
Interpretable EEG seizure prediction using a multiobjective evolutionary algorithm.
Sci Rep. 2022 Mar 15;12(1):4420. doi: 10.1038/s41598-022-08322-w.
3
Noninvasive mobile EEG as a tool for seizure monitoring and management: A systematic review.
Epilepsia. 2022 May;63(5):1041-1063. doi: 10.1111/epi.17220. Epub 2022 Mar 27.
4
Ensemble Deep Neural Network for Automatic Classification of EEG Independent Components.
IEEE Trans Neural Syst Rehabil Eng. 2022;30:559-568. doi: 10.1109/TNSRE.2022.3154891. Epub 2022 Mar 21.
5
Coherent false seizure prediction in epilepsy, coincidence or providence?
Clin Neurophysiol. 2022 Jan;133:157-164. doi: 10.1016/j.clinph.2021.09.022. Epub 2021 Nov 5.
6
The Challenging Path to Developing a Mobile Health Device for Epilepsy: The Current Landscape and Where We Go From Here.
Front Neurol. 2021 Oct 1;12:740743. doi: 10.3389/fneur.2021.740743. eCollection 2021.
7
Seizure Forecasting Using a Novel Sub-Scalp Ultra-Long Term EEG Monitoring System.
Front Neurol. 2021 Aug 23;12:713794. doi: 10.3389/fneur.2021.713794. eCollection 2021.
8
Dimensionality reduction by UMAP reinforces sample heterogeneity analysis in bulk transcriptomic data.
Cell Rep. 2021 Jul 27;36(4):109442. doi: 10.1016/j.celrep.2021.109442.
9
A comparison of 71 binary similarity coefficients: The effect of base rates.
PLoS One. 2021 Apr 7;16(4):e0247751. doi: 10.1371/journal.pone.0247751. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验