Rico Yessica, Ethier Danielle M, Davy Christina M, Sayers Josh, Weir Richard D, Swanson Bradley J, Nocera Joseph J, Kyle Christopher J
Forensic Science Department Trent University Peterborough ON Canada; Natural Resources DNA Profiling and Forensics Centre Trent University Peterborough ON Canada; Present address: CONACYT Instituto de Ecología A.C.Centro Regional del Bajío Avenida Lázaro Cárdenas 253 Pátzcuaro Michoacán 61600 México.
Ontario Badger Project Guelph ON Canada; Department of Integrative Biology University of Guelph Guelph ON Canada.
Evol Appl. 2016 Aug 21;9(10):1271-1284. doi: 10.1111/eva.12410. eCollection 2016 Dec.
Small and isolated populations often exhibit low genetic diversity due to drift and inbreeding, but may simultaneously harbour adaptive variation. We investigate spatial distributions of immunogenetic variation in American badger subspecies (), as a proxy for evaluating their evolutionary potential across the northern extent of the species' range. We compared genetic structure of 20 microsatellites and the major histocompatibility complex (MHC DRB exon 2) to evaluate whether small, isolated populations show low adaptive polymorphism relative to large and well-connected populations. Our results suggest that gene flow plays a prominent role in shaping MHC polymorphism across large spatial scales, while the interplay between gene flow and selection was stronger towards the northern peripheries. The similarity of MHC alleles within subspecies relative to their neutral genetic differentiation suggests that adaptive divergence among subspecies can be maintained despite ongoing gene flow along subspecies boundaries. Neutral genetic diversity was low in small relative to large populations, but MHC diversity within individuals was high in small populations. Despite reduced neutral genetic variation, small and isolated populations harbour functional variation that likely contribute to the species evolutionary potential at the northern range. Our findings suggest that conservation approaches should focus on managing adaptive variation across the species range rather than protecting subspecies per se.
由于遗传漂变和近亲繁殖,小而孤立的种群通常表现出低遗传多样性,但可能同时蕴藏着适应性变异。我们研究了美洲獾亚种免疫遗传变异的空间分布,以此作为评估该物种在其分布范围北部进化潜力的一个指标。我们比较了20个微卫星和主要组织相容性复合体(MHC DRB外显子2)的遗传结构,以评估相对于大且联系紧密的种群,小而孤立的种群是否表现出低适应性多态性。我们的结果表明,基因流在大空间尺度上塑造MHC多态性方面起着重要作用,而在北部边缘地区,基因流与选择之间的相互作用更强。相对于中性遗传分化,亚种内MHC等位基因的相似性表明,尽管沿着亚种边界存在持续的基因流,但亚种间的适应性分化仍可维持。相对于大种群,小种群的中性遗传多样性较低,但小种群中个体的MHC多样性较高。尽管中性遗传变异减少,但小而孤立的种群蕴藏着功能性变异,这可能有助于该物种在北部分布范围内的进化潜力。我们的研究结果表明,保护方法应侧重于管理整个物种分布范围内的适应性变异,而不是单纯保护亚种本身。