Suppr超能文献

剪接体RNA解旋酶Brr2中顺式和反式调控机制的相互作用

Interplay of cis- and trans-regulatory mechanisms in the spliceosomal RNA helicase Brr2.

作者信息

Absmeier Eva, Becke Christian, Wollenhaupt Jan, Santos Karine F, Wahl Markus C

机构信息

a Freie Universität Berlin, Laboratory of Structural Biochemistry , Berlin , Germany.

b Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography , Berlin , Germany.

出版信息

Cell Cycle. 2017 Jan 2;16(1):100-112. doi: 10.1080/15384101.2016.1255384. Epub 2016 Nov 23.

Abstract

RNA helicase Brr2 is implicated in multiple phases of pre-mRNA splicing and thus requires tight regulation. Brr2 can be auto-inhibited via a large N-terminal region folding back onto its helicase core and auto-activated by a catalytically inactive C-terminal helicase cassette. Furthermore, it can be regulated in trans by the Jab1 domain of the Prp8 protein, which can inhibit Brr2 by intermittently inserting a C-terminal tail in the enzyme's RNA-binding tunnel or activate the helicase after removal of this tail. Presently it is unclear, whether these regulatory mechanisms functionally interact and to which extent they are evolutionarily conserved. Here, we report crystal structures of Saccharomyces cerevisiae and Chaetomium thermophilum Brr2-Jab1 complexes, demonstrating that Jab1-based inhibition of Brr2 presumably takes effect in all eukaryotes but is implemented via organism-specific molecular contacts. Moreover, the structures show that Brr2 auto-inhibition can act in concert with Jab1-mediated inhibition, and suggest that the N-terminal region influences how the Jab1 C-terminal tail interacts at the RNA-binding tunnel. Systematic RNA binding and unwinding studies revealed that the N-terminal region and the Jab1 C-terminal tail specifically interfere with accommodation of double-stranded and single-stranded regions of an RNA substrate, respectively, mutually reinforcing each other. Additionally, such analyses show that regulation based on the N-terminal region requires the presence of the inactive C-terminal helicase cassette. Together, our results outline an intricate system of regulatory mechanisms, which control Brr2 activities during snRNP assembly and splicing.

摘要

RNA解旋酶Brr2参与前体mRNA剪接的多个阶段,因此需要严格调控。Brr2可通过其大的N端区域回折到解旋酶核心上而实现自身抑制,并被催化无活性的C端解旋酶结构域自动激活。此外,它可被Prp8蛋白的Jab1结构域反式调控,该结构域可通过将C端尾巴间歇性插入酶的RNA结合通道来抑制Brr2,或在去除该尾巴后激活解旋酶。目前尚不清楚这些调控机制是否在功能上相互作用以及它们在进化上的保守程度。在此,我们报道了酿酒酵母和嗜热毛壳菌Brr2-Jab1复合物的晶体结构,表明基于Jab1对Brr2的抑制作用可能在所有真核生物中都起作用,但通过特定于生物体的分子接触来实现。此外,这些结构表明Brr2的自身抑制可与Jab1介导的抑制协同作用,并表明N端区域影响Jab1 C端尾巴在RNA结合通道处的相互作用方式。系统性的RNA结合和解旋研究表明,N端区域和Jab1 C端尾巴分别特异性干扰RNA底物双链和单链区域的容纳,相互加强。此外,此类分析表明基于N端区域的调控需要无活性的C端解旋酶结构域的存在。总之,我们的结果勾勒出一个复杂的调控机制系统,该系统在snRNP组装和剪接过程中控制Brr2的活性。

相似文献

1
Interplay of cis- and trans-regulatory mechanisms in the spliceosomal RNA helicase Brr2.
Cell Cycle. 2017 Jan 2;16(1):100-112. doi: 10.1080/15384101.2016.1255384. Epub 2016 Nov 23.
2
The large N-terminal region of the Brr2 RNA helicase guides productive spliceosome activation.
Genes Dev. 2015 Dec 15;29(24):2576-87. doi: 10.1101/gad.271528.115. Epub 2015 Dec 4.
3
A noncanonical PWI domain in the N-terminal helicase-associated region of the spliceosomal Brr2 protein.
Acta Crystallogr D Biol Crystallogr. 2015 Apr;71(Pt 4):762-71. doi: 10.1107/S1399004715001005. Epub 2015 Mar 26.
4
Functions and regulation of the Brr2 RNA helicase during splicing.
Cell Cycle. 2016 Dec 16;15(24):3362-3377. doi: 10.1080/15384101.2016.1249549. Epub 2016 Oct 28.
5
Brr2 plays a role in spliceosomal activation in addition to U4/U6 unwinding.
Nucleic Acids Res. 2015 Mar 31;43(6):3286-97. doi: 10.1093/nar/gkv062. Epub 2015 Feb 10.
6
Retinitis Pigmentosa Mutations in Bad Response to Refrigeration 2 (Brr2) Impair ATPase and Helicase Activity.
J Biol Chem. 2016 Jun 3;291(23):11954-65. doi: 10.1074/jbc.M115.710848. Epub 2016 Apr 12.
7
Substrate-assisted mechanism of RNP disruption by the spliceosomal Brr2 RNA helicase.
Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):7798-803. doi: 10.1073/pnas.1524616113. Epub 2016 Jun 27.
9
Inhibition of RNA helicase Brr2 by the C-terminal tail of the spliceosomal protein Prp8.
Science. 2013 Jul 5;341(6141):80-4. doi: 10.1126/science.1237515. Epub 2013 May 23.

引用本文的文献

1
Regulation and mechanisms of action of RNA helicases.
RNA Biol. 2024 Jan;21(1):24-38. doi: 10.1080/15476286.2024.2415801. Epub 2024 Oct 22.
2
RNA helicase Brr2a promotes miRNA biogenesis by properly remodelling secondary structure of pri-miRNAs.
Nat Plants. 2024 Oct;10(10):1532-1547. doi: 10.1038/s41477-024-01788-8. Epub 2024 Sep 13.
4
Spliceosome assembly and regulation: insights from analysis of highly reduced spliceosomes.
RNA. 2023 May;29(5):531-550. doi: 10.1261/rna.079273.122. Epub 2023 Feb 3.
9
The interaction of DNA repair factors ASCC2 and ASCC3 is affected by somatic cancer mutations.
Nat Commun. 2020 Nov 2;11(1):5535. doi: 10.1038/s41467-020-19221-x.
10
Structural analysis of the intrinsically disordered splicing factor Spp2 and its binding to the DEAH-box ATPase Prp2.
Proc Natl Acad Sci U S A. 2020 Feb 11;117(6):2948-2956. doi: 10.1073/pnas.1907960117. Epub 2020 Jan 23.

本文引用的文献

1
Molecular architecture of the Saccharomyces cerevisiae activated spliceosome.
Science. 2016 Sep 23;353(6306):1399-1405. doi: 10.1126/science.aag1906. Epub 2016 Aug 25.
2
Cryo-EM structure of the spliceosome immediately after branching.
Nature. 2016 Sep 8;537(7619):197-201. doi: 10.1038/nature19316. Epub 2016 Jul 26.
3
Structure of a yeast catalytic step I spliceosome at 3.4 Å resolution.
Science. 2016 Aug 26;353(6302):895-904. doi: 10.1126/science.aag2235. Epub 2016 Jul 21.
4
Structure of a yeast activated spliceosome at 3.5 Å resolution.
Science. 2016 Aug 26;353(6302):904-11. doi: 10.1126/science.aag0291. Epub 2016 Jul 21.
5
Substrate-assisted mechanism of RNP disruption by the spliceosomal Brr2 RNA helicase.
Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):7798-803. doi: 10.1073/pnas.1524616113. Epub 2016 Jun 27.
6
Prp8 retinitis pigmentosa mutants cause defects in the transition between the catalytic steps of splicing.
RNA. 2016 May;22(5):793-809. doi: 10.1261/rna.055459.115. Epub 2016 Mar 11.
7
Molecular architecture of the human U4/U6.U5 tri-snRNP.
Science. 2016 Mar 25;351(6280):1416-20. doi: 10.1126/science.aad2085. Epub 2016 Feb 18.
8
Cryo-EM structure of the yeast U4/U6.U5 tri-snRNP at 3.7 Å resolution.
Nature. 2016 Feb 18;530(7590):298-302. doi: 10.1038/nature16940. Epub 2016 Feb 1.
9
The 3.8 Å structure of the U4/U6.U5 tri-snRNP: Insights into spliceosome assembly and catalysis.
Science. 2016 Jan 29;351(6272):466-75. doi: 10.1126/science.aad6466. Epub 2016 Jan 7.
10
The large N-terminal region of the Brr2 RNA helicase guides productive spliceosome activation.
Genes Dev. 2015 Dec 15;29(24):2576-87. doi: 10.1101/gad.271528.115. Epub 2015 Dec 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验