Anglister Jacob, Srivastava Gautam, Naider Fred
Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
Prog Nucl Magn Reson Spectrosc. 2016 Nov;97:40-56. doi: 10.1016/j.pnmrs.2016.08.002. Epub 2016 Aug 18.
Intermolecular NOE interactions are invaluable for structure determination of biomolecular complexes by NMR and they represent the "gold-standard" amongst NMR measurements for characterizing interfaces. These NOEs constitute only a small fraction of the observed NOEs in a complex and are usually weaker than many of the intramolecular NOEs. A number of methods have been developed to remove the intramolecular NOEs that interfere with the identification of intermolecular NOEs. NMR experiments used to observe intermolecular NOE interactions in large protein complexes must cope with the short T2 relaxation time of the protons and heteronuclei in these complexes because they result in severe losses in sensitivity. The isotope-edited/isotope-filtered experiment is a powerful method for extraction of intermolecular NOEs in biomolecular complexes. Its application to large protein complexes is limited because of severe losses in signal-to-noise ratio caused by delays in the pulse sequence necessary for the multiple magnetization transfer steps between protons and heteronuclei. Isotope-edited/isotope-edited experiments, in which one protein is usually labeled with C and the other is labeled with N, reduce possible artifacts in the filtering experiments and improve somewhat the sensitivity of these experiments. Sensitivity can also be improved by deuteration of the components of the complex in order to replace either or both of the filtering or editing steps. Asymmetric deuteration, where aromatic residues in one protein and non-aromatic amino acids in the other are reverse protonated, can eliminate the editing and the filtering steps altogether, thus maintaining high sensitivity even for large proteins complexes. Difference spectroscopy and the use of 2D NOESY experiments without using editing or filtering steps can significantly increase the signal-to-noise ratio in experiments aimed at observing intermolecular NOEs. The measurement of NOESY spectra of three different preparations of a heterodimeric complex under investigation in which one or neither of the components is uniformly deuterated, and calculation of a double difference spectrum provides information on all intermolecular NOEs of non-exchangeable protons. Recent studies indicate that many protein-protein interactions are actually between a protein and a linear peptide recognition motif of the second protein, and determinants represented by linear peptides contribute significantly to the binding energy. NMR is a very versatile method to study peptide-protein interactions over a wide range of binding affinities and binding kinetics. Protein-peptide interactions in complexes exhibiting tight binding can be studied using single and/or multiple deuteration of the peptide residues and measuring a difference NOESY spectrum. This difference spectrum will show exclusively intra- and intermolecular interactions of the peptide protons that were deuterated. Transferred nuclear Overhauser spectroscopy (TRNOE) extends NMR to determine interactions within and between a weakly-bound rapidly-exchanging peptide and its protein target. TRNOE, together with asymmetric deuteration, is applicable to complexes up to ∼100KDa and is highly sensitive, taking advantage of the long average T2 of the peptide protons. Among the methods described in this review, TRNOE has the best potential to determine intermolecular NOEs for the upper molecular weight limit of proteins that can be studied in detail by NMR.
分子间核Overhauser效应(NOE)相互作用对于通过核磁共振(NMR)确定生物分子复合物的结构非常重要,并且它们代表了用于表征界面的NMR测量中的“金标准”。这些NOE仅占复合物中观察到的NOE的一小部分,并且通常比许多分子内NOE弱。已经开发了许多方法来去除干扰分子间NOE识别的分子内NOE。用于观察大蛋白质复合物中分子间NOE相互作用的NMR实验必须应对这些复合物中质子和异核的短T2弛豫时间,因为它们会导致灵敏度严重损失。同位素编辑/同位素过滤实验是一种用于提取生物分子复合物中分子间NOE的强大方法。由于质子和异核之间多次磁化转移步骤所需的脉冲序列延迟导致信噪比严重损失,其在大蛋白质复合物中的应用受到限制。同位素编辑/同位素编辑实验,其中一种蛋白质通常用碳标记,另一种用氮标记,减少了过滤实验中可能出现的伪影,并在一定程度上提高了这些实验的灵敏度。通过对复合物的组分进行氘代以取代过滤或编辑步骤中的一个或两个,也可以提高灵敏度。不对称氘代,即一种蛋白质中的芳香族残基和另一种蛋白质中的非芳香族氨基酸进行反向质子化,可以完全消除编辑和过滤步骤,从而即使对于大蛋白质复合物也能保持高灵敏度。差分光谱法以及使用不进行编辑或过滤步骤的二维NOESY实验可以显著提高旨在观察分子间NOE的实验中的信噪比。对正在研究的异二聚体复合物的三种不同制剂的NOESY光谱进行测量,其中一种或两种组分都没有均匀氘代,并计算双差分光谱,可提供有关所有不可交换质子的分子间NOE的信息。最近的研究表明,许多蛋白质-蛋白质相互作用实际上是在一种蛋白质与另一种蛋白质的线性肽识别基序之间,并且由线性肽代表的决定因素对结合能有显著贡献。NMR是一种非常通用的方法,可用于研究广泛的结合亲和力和结合动力学范围内的肽-蛋白质相互作用。对于表现出紧密结合的复合物中的蛋白质-肽相互作用,可以使用肽残基的单氘代和/或多氘代并测量差分NOESY光谱来进行研究。这种差分光谱将仅显示被氘代的肽质子的分子内和分子间相互作用。转移核Overhauser光谱(TRNOE)扩展了NMR以确定弱结合的快速交换肽与其蛋白质靶标之间以及内部的相互作用。TRNOE与不对称氘代一起适用于高达约100KDa的复合物,并且高度灵敏,利用了肽质子的长平均T2。在本综述中描述的方法中,TRNOE在确定可通过NMR详细研究的蛋白质分子量上限的分子间NOE方面具有最佳潜力。