Bastiani Matteo, Oros-Peusquens Ana-Maria, Seehaus Arne, Brenner Daniel, Möllenhoff Klaus, Celik Avdo, Felder Jörg, Bratzke Hansjürgen, Shah Nadim J, Galuske Ralf, Goebel Rainer, Roebroeck Alard
Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht UniversityMaastricht, Netherlands; Research Centre Jülich, Institute of Neuroscience and Medicine (INM-4)Jülich, Germany.
Research Centre Jülich, Institute of Neuroscience and Medicine (INM-4) Jülich, Germany.
Front Neurosci. 2016 Nov 10;10:487. doi: 10.3389/fnins.2016.00487. eCollection 2016.
Recently, several magnetic resonance imaging contrast mechanisms have been shown to distinguish cortical substructure corresponding to selected cortical layers. Here, we investigate cortical layer and area differentiation by automatized unsupervised clustering of high-resolution diffusion MRI data. Several groups of adjacent layers could be distinguished in human primary motor and premotor cortex. We then used the signature of diffusion MRI signals along cortical depth as a criterion to detect area boundaries and find borders at which the signature changes abruptly. We validate our clustering results by histological analysis of the same tissue. These results confirm earlier studies which show that diffusion MRI can probe layer-specific intracortical fiber organization and, moreover, suggests that it contains enough information to automatically classify architecturally distinct cortical areas. We discuss the strengths and weaknesses of the automatic clustering approach and its appeal for MR-based cortical histology.
最近,已证实几种磁共振成像对比机制能够区分与特定皮质层相对应的皮质亚结构。在此,我们通过对高分辨率扩散加权磁共振成像(MRI)数据进行自动无监督聚类来研究皮质层和区域的区分。在人类初级运动皮层和运动前区皮层中,可以区分出几组相邻的层。然后,我们将沿皮质深度的扩散加权MRI信号特征作为检测区域边界的标准,并找到信号特征发生突然变化的边界。我们通过对相同组织的组织学分析来验证聚类结果。这些结果证实了早期的研究,即扩散加权MRI能够探测层特异性皮质内纤维组织,此外,还表明它包含足够的信息来自动分类结构上不同的皮质区域。我们讨论了自动聚类方法的优缺点及其对基于磁共振成像的皮质组织学的吸引力。