1 Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC) , Madrid, Spain .
2 Centro de Biotecnología "Profesor Alberto Ruiz," Universidad Católica del Norte , Antofagasta, Chile .
Astrobiology. 2018 May;18(5):586-606. doi: 10.1089/ast.2015.1342. Epub 2016 Nov 28.
Oligotrophic glacial lakes in the Andes Mountains serve as models to study the effects of climate change on natural biological systems. The persistent high UV regime and evolution of the lake biota due to deglaciation make Andean lake ecosystems potential analogues in the search for life on other planetary bodies. Our objective was to identify microbial biomarkers and metabolic patterns that represent time points in the evolutionary history of Andean glacial lakes, as these may be used in long-term studies as microscale indicators of climate change processes. We investigated a variety of microbial markers in shallow sediments from Laguna Negra and Lo Encañado lakes (Región Metropolitana, Chile). An on-site immunoassay-based Life Detector Chip (LDChip) revealed the presence of sulfate-reducing bacteria, methanogenic archaea, and exopolymeric substances from Gammaproteobacteria. Bacterial and archaeal 16S rRNA gene sequences obtained from field samples confirmed the results from the immunoassays and also revealed the presence of Alpha-, Beta-, Gamma-, and Deltaproteobacteria, as well as cyanobacteria and methanogenic archaea. The complementary immunoassay and phylogenetic results indicate a rich microbial diversity with active sulfate reduction and methanogenic activities along the shoreline and in shallow sediments. Sulfate inputs from the surrounding volcanic terrains during deglaciation may explain the observed microbial biomarker and metabolic patterns, which differ with depth and between the two lakes. A switch from aerobic and heterotrophic metabolisms to anaerobic ones such as sulfate reduction and methanogenesis in the shallow shores likely reflects the natural evolution of the lake sediments due to deglaciation. Hydrodynamic deposition of sediments creates compartmentalization (e.g., sediments with different structure and composition surrounded by oligotrophic water) that favors metabolic transitions. Similar phenomena would be expected to occur on other planetary lakes, such as those of Titan, where watery niches fed by depositional events would be surrounded by a "sea" of hydrocarbons. Key Words: Glacier lakes-Sedimentation-Prokaryotic metabolisms and biomarkers-Deglaciation-Life detection-Planetary exploration. Astrobiology 18, 586-606.
安第斯山脉的寡营养冰川湖是研究气候变化对自然生物系统影响的模型。由于冰川消退,持续的高 UV 环境和湖生物群的演化使安第斯湖生态系统成为在其他行星体上寻找生命的潜在类似物。我们的目标是确定微生物生物标志物和代谢模式,这些标志物和模式代表了安第斯冰川湖演化历史上的时间点,因为它们可以在长期研究中作为气候变化过程的微观尺度指标。我们研究了智利首都大区内的 Laguna Negra 和 Lo Encañado 等浅湖底泥中的多种微生物标志物。现场免疫测定生命探测芯片(LDChip)显示,硫酸盐还原菌、产甲烷古菌和源自γ变形菌的胞外聚合物存在。从现场样本中获得的细菌和古菌 16S rRNA 基因序列证实了免疫测定的结果,并揭示了α、β、γ和δ变形菌以及蓝细菌和产甲烷古菌的存在。互补的免疫测定和系统发育结果表明,在湖滨和浅沉积物中存在丰富的微生物多样性,具有活跃的硫酸盐还原和产甲烷作用。冰川消退期间来自周围火山地形的硫酸盐输入可能解释了所观察到的微生物生物标志物和代谢模式,这些模式随深度和两个湖泊而变化。在浅滩中,从需氧和异养代谢向硫酸盐还原和产甲烷等厌氧代谢的转变可能反映了由于冰川消退而导致的湖泊沉积物的自然演化。沉积物的水动力沉积形成了分区化(例如,由贫营养水包围的具有不同结构和组成的沉积物),有利于代谢转变。类似的现象预计也会出现在其他行星湖泊中,例如土卫六上的那些湖泊,其中由沉积事件提供营养的水生生境将被碳氢化合物“海洋”包围。关键词:冰川湖-沉积-原核代谢和生物标志物-冰川消退-生命探测-行星探索。天体生物学 18,586-606。