Suppr超能文献

基于自适应粒度的钢铁行业能源系统预测。

Adaptive Granulation-Based Prediction for Energy System of Steel Industry.

出版信息

IEEE Trans Cybern. 2018 Jan;48(1):127-138. doi: 10.1109/TCYB.2016.2626480. Epub 2016 Nov 23.

Abstract

The flow variation tendency of byproduct gas plays a crucial role for energy scheduling in steel industry. An accurate prediction of its future trends will be significantly beneficial for the economic profits of steel enterprise. In this paper, a long-term prediction model for the energy system is proposed by providing an adaptive granulation-based method that considers the production semantics involved in the fluctuation tendency of the energy data, and partitions them into a series of information granules. To fully reflect the corresponding data characteristics of the formed unequal-length temporal granules, a 3-D feature space consisting of the timespan, the amplitude and the linetype is designed as linguistic descriptors. In particular, a collaborative-conditional fuzzy clustering method is proposed to granularize the tendency-based feature descriptors and specifically measure the amplitude variation of industrial data which plays a dominant role in the feature space. To quantify the performance of the proposed method, a series of real-world industrial data coming from the energy data center of a steel plant is employed to conduct the comparative experiments. The experimental results demonstrate that the proposed method successively satisfies the requirements of the practically viable prediction.

摘要

副产气的流量变化趋势对钢铁行业的能源调度起着至关重要的作用。准确预测其未来趋势将显著有利于钢铁企业的经济效益。本文提出了一种基于自适应粒度的能源系统长期预测模型,该模型考虑了能源数据波动趋势中涉及的生产语义,并将其划分为一系列信息粒度。为了充分反映形成的非等长时间粒度的相应数据特征,设计了一个由时间跨度、幅度和线型组成的 3-D 特征空间作为语言描述符。特别是,提出了一种协作条件模糊聚类方法来对基于趋势的特征描述符进行粒度划分,并专门测量在特征空间中起主导作用的工业数据的幅度变化。为了量化所提出方法的性能,使用来自钢铁厂能源数据中心的一系列实际工业数据来进行对比实验。实验结果表明,所提出的方法成功地满足了实际可行预测的要求。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验