Suppr超能文献

随机而非闭环外周刺激诱导的人类运动皮质输出的可塑性变化:因果关系的困扰

Plastic Changes in Human Motor Cortical Output Induced by Random but not Closed-Loop Peripheral Stimulation: the Curse of Causality.

作者信息

Brown Kenneth I, Williams Elizabeth R, de Carvalho Felipe, Baker Stuart N

机构信息

Institute of Neuroscience, Newcastle University Newcastle upon Tyne, UK.

出版信息

Front Hum Neurosci. 2016 Nov 15;10:590. doi: 10.3389/fnhum.2016.00590. eCollection 2016.

Abstract

Previous work showed that repetitive peripheral nerve stimulation can induce plastic changes in motor cortical output. Triggering electrical stimulation of central structures from natural activity can also generate plasticity. In this study, we tested whether triggering peripheral nerve stimulation from muscle activity would likewise induce changes in motor output. We developed a wearable electronic device capable of recording electromyogram (EMG) and delivering electrical stimulation under closed-loop control. This allowed paired stimuli to be delivered over longer periods than standard laboratory-based protocols. We tested this device in healthy human volunteers. Motor cortical output in relaxed thenar muscles was first assessed via the recruitment curve of responses to contralateral transcranial magnetic stimulation. The wearable device was then configured to record thenar EMG and stimulate the median nerve at the wrist (intensity around motor threshold, rate ~0.66 Hz). Subjects carried out normal daily activities for 4-7 h, before returning to the laboratory for repeated recruitment curve assessment. Four stimulation protocols were tested (9-14 subjects each): , no stimuli delivered; , stimuli triggered by EMG activity above threshold; , stimuli timed according to a previous session in the same subject; , stimuli given when EMG was silent. As expected, did not modify the recruitment curve. and conditions produced no significant effects across subjects, although there were changes in some individuals. produced a significant and substantial increase, with average responses 2.14 times larger at 30% stimulator intensity above threshold. We argue that unavoidable delays in the closed loop feedback, due mainly to central and peripheral conduction times, mean that stimuli in the paradigm arrived too late after cortical activation to generate consistent plastic changes. By contrast, stimuli delivered essentially at random during the paradigm may have caused a generalized increase in cortical excitability akin to stochastic resonance, leading to plastic changes in corticospinal output. Our study demonstrates that non-invasive closed loop stimulation may be critically limited by conduction delays and the unavoidable constraint of causality.

摘要

先前的研究表明,重复性外周神经刺激可诱导运动皮质输出发生可塑性变化。从自然活动触发对中枢结构的电刺激也能产生可塑性。在本研究中,我们测试了从肌肉活动触发外周神经刺激是否同样会诱导运动输出的变化。我们开发了一种可穿戴电子设备,该设备能够记录肌电图(EMG)并在闭环控制下进行电刺激。这使得配对刺激能够在比基于标准实验室的方案更长的时间内传递。我们在健康人类志愿者中测试了该设备。首先通过对侧经颅磁刺激反应的募集曲线评估放松的大鱼际肌中的运动皮质输出。然后将可穿戴设备配置为记录大鱼际肌EMG并刺激腕部正中神经(强度约为运动阈值,频率~0.66Hz)。受试者进行4 - 7小时的正常日常活动,之后返回实验室进行重复的募集曲线评估。测试了四种刺激方案(每种方案9 - 14名受试者):,不给予刺激;,由高于阈值的EMG活动触发刺激;,根据同一受试者之前的会话定时给予刺激;,在EMG静止时给予刺激。正如预期的那样,没有改变募集曲线。和条件在所有受试者中未产生显著影响,尽管在一些个体中存在变化。产生了显著且大幅的增加,在高于阈值30%刺激强度时平均反应大2.14倍。我们认为,主要由于中枢和外周传导时间导致的闭环反馈中不可避免的延迟意味着范式中的刺激在皮质激活后到达得太晚,无法产生一致的可塑性变化。相比之下,范式中基本上随机传递的刺激可能导致了类似于随机共振的皮质兴奋性普遍增加,从而导致皮质脊髓输出的可塑性变化。我们的研究表明,非侵入性闭环刺激可能受到传导延迟和因果关系不可避免的限制的严重制约。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e030/5108789/f2068ed8b3d1/fnhum-10-00590-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验