Suppr超能文献

通过一种新型稀疏相关模型鉴定阿尔茨海默病中的鉴别性影像蛋白质组学关联

IDENTIFICATION OF DISCRIMINATIVE IMAGING PROTEOMICS ASSOCIATIONS IN ALZHEIMER'S DISEASE VIA A NOVEL SPARSE CORRELATION MODEL.

作者信息

Yan Jingwen, Risacher Shannon L, Nho Kwangsik, Saykin Andrew J, Shen L I

机构信息

Department of BioHealth Informatics, Indiana University, Indianapolis, 46202, USA2Center for Computational Biology and Bioinformatics, School of Medicine, Indiana University, Indianapolis, 46202, USA*To whom correspondence should be addressed.,

出版信息

Pac Symp Biocomput. 2017;22:94-104. doi: 10.1142/9789813207813_0010.

Abstract

Brain imaging and protein expression, from both cerebrospinal fluid and blood plasma, have been found to provide complementary information in predicting the clinical outcomes of Alzheimer's disease (AD). But the underlying associations that contribute to such a complementary relationship have not been previously studied yet. In this work, we will perform an imaging proteomics association analysis to explore how they are related with each other. While traditional association models, such as Sparse Canonical Correlation Analysis (SCCA), can not guarantee the selection of only disease-relevant biomarkers and associations, we propose a novel discriminative SCCA (denoted as DSCCA) model with new penalty terms to account for the disease status information. Given brain imaging, proteomic and diagnostic data, the proposed model can perform a joint association and multi-class discrimination analysis, such that we can not only identify disease-relevant multimodal biomarkers, but also reveal strong associations between them. Based on a real imaging proteomic data set, the empirical results show that DSCCA and traditional SCCA have comparable association performances. But in a further classification analysis, canonical variables of imaging and proteomic data obtained in DSCCA demonstrate much more discrimination power toward multiple pairs of diagnosis groups than those obtained in SCCA.

摘要

脑成像以及来自脑脊液和血浆的蛋白质表达,已被发现能在预测阿尔茨海默病(AD)的临床结果方面提供互补信息。但此前尚未对促成这种互补关系的潜在关联进行过研究。在这项工作中,我们将进行成像蛋白质组学关联分析,以探索它们之间的相互关系。虽然传统的关联模型,如稀疏典型相关分析(SCCA),不能保证仅选择与疾病相关的生物标志物和关联,但我们提出了一种带有新惩罚项的新型判别式SCCA(记为DSCCA)模型,以考虑疾病状态信息。给定脑成像、蛋白质组学和诊断数据,所提出的模型可以进行联合关联和多类别判别分析,这样我们不仅可以识别与疾病相关的多模态生物标志物,还可以揭示它们之间的强关联。基于一个真实的成像蛋白质组数据集,实证结果表明DSCCA和传统的SCCA具有相当的关联性能。但在进一步的分类分析中,DSCCA中获得的成像和蛋白质组数据的典型变量对多组诊断组的判别能力比SCCA中获得的典型变量要强得多。

相似文献

引用本文的文献

4
Multivariate Analysis and Modelling of multiple Brain endOphenotypes: Let's MAMBO!多种脑内表型的多变量分析与建模:让我们行动起来!
Comput Struct Biotechnol J. 2021 Oct 13;19:5800-5810. doi: 10.1016/j.csbj.2021.10.019. eCollection 2021.
8
Brain Imaging Genomics: Integrated Analysis and Machine Learning.脑成像基因组学:综合分析与机器学习
Proc IEEE Inst Electr Electron Eng. 2020 Jan;108(1):125-162. doi: 10.1109/JPROC.2019.2947272. Epub 2019 Oct 29.

本文引用的文献

1
2016 Alzheimer's disease facts and figures.2016 年阿尔茨海默病事实和数据。
Alzheimers Dement. 2016 Apr;12(4):459-509. doi: 10.1016/j.jalz.2016.03.001.
7
IMAGING GENETICS VIA SPARSE CANONICAL CORRELATION ANALYSIS.基于稀疏典型相关分析的影像遗传学
Proc IEEE Int Symp Biomed Imaging. 2013 Dec 31;2013:740-743. doi: 10.1109/ISBI.2013.6556581.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验