Suppr超能文献

使用基于约束的模型识别癌症特异性代谢特征

IDENTIFYING CANCER SPECIFIC METABOLIC SIGNATURES USING CONSTRAINT-BASED MODELS.

作者信息

Schultz A, Mehta S, Hu C W, Hoff F W, Horton T M, Kornblau S M, Qutub A A

机构信息

Department of Bioengineering, Rice University, Houston, Texas 77005, U.S.A.

出版信息

Pac Symp Biocomput. 2017;22:485-496. doi: 10.1142/9789813207813_0045.

Abstract

Cancer metabolism differs remarkably from the metabolism of healthy surrounding tissues, and it is extremely heterogeneous across cancer types. While these metabolic differences provide promising avenues for cancer treatments, much work remains to be done in understanding how metabolism is rewired in malignant tissues. To that end, constraint-based models provide a powerful computational tool for the study of metabolism at the genome scale. To generate meaningful predictions, however, these generalized human models must first be tailored for specific cell or tissue sub-types. Here we first present two improved algorithms for (1) the generation of these context-specific metabolic models based on omics data, and (2) Monte-Carlo sampling of the metabolic model ux space. By applying these methods to generate and analyze context-specific metabolic models of diverse solid cancer cell line data, and primary leukemia pediatric patient biopsies, we demonstrate how the methodology presented in this study can generate insights into the rewiring differences across solid tumors and blood cancers.

摘要

癌症代谢与周围健康组织的代谢显著不同,并且在不同癌症类型之间具有极大的异质性。虽然这些代谢差异为癌症治疗提供了有前景的途径,但在理解恶性组织中代谢如何重新布线方面仍有许多工作要做。为此,基于约束的模型为在基因组规模上研究代谢提供了强大的计算工具。然而,为了产生有意义的预测,这些通用的人类模型必须首先针对特定的细胞或组织亚型进行定制。在这里,我们首先提出两种改进的算法,用于(1)基于组学数据生成这些特定背景的代谢模型,以及(2)对代谢模型通量空间进行蒙特卡罗采样。通过应用这些方法生成和分析多种实体癌细胞系数据以及原发性白血病儿科患者活检的特定背景代谢模型,我们展示了本研究中提出的方法如何能够深入了解实体瘤和血癌之间的重新布线差异。

相似文献

1
IDENTIFYING CANCER SPECIFIC METABOLIC SIGNATURES USING CONSTRAINT-BASED MODELS.
Pac Symp Biocomput. 2017;22:485-496. doi: 10.1142/9789813207813_0045.
2
DEXOM: Diversity-based enumeration of optimal context-specific metabolic networks.
PLoS Comput Biol. 2021 Feb 11;17(2):e1008730. doi: 10.1371/journal.pcbi.1008730. eCollection 2021 Feb.
3
Increasing consensus of context-specific metabolic models by integrating data-inferred cell functions.
PLoS Comput Biol. 2019 Apr 15;15(4):e1006867. doi: 10.1371/journal.pcbi.1006867. eCollection 2019 Apr.
4
Zooming-in on cancer metabolic rewiring with tissue specific constraint-based models.
Comput Biol Chem. 2016 Jun;62:60-9. doi: 10.1016/j.compbiolchem.2016.03.002. Epub 2016 Mar 14.
5
A benchmark-driven approach to reconstruct metabolic networks for studying cancer metabolism.
PLoS Comput Biol. 2019 Apr 22;15(4):e1006936. doi: 10.1371/journal.pcbi.1006936. eCollection 2019 Apr.
6
A pipeline for the reconstruction and evaluation of context-specific human metabolic models at a large-scale.
PLoS Comput Biol. 2022 Jun 24;18(6):e1009294. doi: 10.1371/journal.pcbi.1009294. eCollection 2022 Jun.
7
Computational Modeling of Human Metabolism and Its Application to Systems Biomedicine.
Methods Mol Biol. 2016;1386:253-81. doi: 10.1007/978-1-4939-3283-2_12.
8
A comparison of Monte Carlo sampling methods for metabolic network models.
PLoS One. 2020 Jul 1;15(7):e0235393. doi: 10.1371/journal.pone.0235393. eCollection 2020.
10
The FASTCORE Family: For the Fast Reconstruction of Compact Context-Specific Metabolic Networks Models.
Methods Mol Biol. 2018;1716:101-110. doi: 10.1007/978-1-4939-7528-0_4.

本文引用的文献

1
Glycosaminoglycan Profiling in Patients' Plasma and Urine Predicts the Occurrence of Metastatic Clear Cell Renal Cell Carcinoma.
Cell Rep. 2016 May 24;15(8):1822-36. doi: 10.1016/j.celrep.2016.04.056. Epub 2016 May 12.
2
ll-ACHRB: a scalable algorithm for sampling the feasible solution space of metabolic networks.
Bioinformatics. 2016 Aug 1;32(15):2330-7. doi: 10.1093/bioinformatics/btw132. Epub 2016 Mar 11.
3
Reconstruction of Tissue-Specific Metabolic Networks Using CORDA.
PLoS Comput Biol. 2016 Mar 4;12(3):e1004808. doi: 10.1371/journal.pcbi.1004808. eCollection 2016 Mar.
5
BiGG Models: A platform for integrating, standardizing and sharing genome-scale models.
Nucleic Acids Res. 2016 Jan 4;44(D1):D515-22. doi: 10.1093/nar/gkv1049. Epub 2015 Oct 17.
6
Body mass index, physical activity, and risk of adult meningioma and glioma: A meta-analysis.
Neurology. 2015 Oct 13;85(15):1342-50. doi: 10.1212/WNL.0000000000002020. Epub 2015 Sep 16.
7
Obesity and Risk for Brain/CNS Tumors, Gliomas and Meningiomas: A Meta-Analysis.
PLoS One. 2015 Sep 2;10(9):e0136974. doi: 10.1371/journal.pone.0136974. eCollection 2015.
8
Modeling cancer metabolism on a genome scale.
Mol Syst Biol. 2015 Jun 30;11(6):817. doi: 10.15252/msb.20145307.
9
Uniform sampling of steady states in metabolic networks: heterogeneous scales and rounding.
PLoS One. 2015 Apr 7;10(4):e0122670. doi: 10.1371/journal.pone.0122670. eCollection 2015.
10
Arginine dependence of acute myeloid leukemia blast proliferation: a novel therapeutic target.
Blood. 2015 Apr 9;125(15):2386-96. doi: 10.1182/blood-2014-09-600643. Epub 2015 Feb 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验