Schultz A, Mehta S, Hu C W, Hoff F W, Horton T M, Kornblau S M, Qutub A A
Department of Bioengineering, Rice University, Houston, Texas 77005, U.S.A.
Pac Symp Biocomput. 2017;22:485-496. doi: 10.1142/9789813207813_0045.
Cancer metabolism differs remarkably from the metabolism of healthy surrounding tissues, and it is extremely heterogeneous across cancer types. While these metabolic differences provide promising avenues for cancer treatments, much work remains to be done in understanding how metabolism is rewired in malignant tissues. To that end, constraint-based models provide a powerful computational tool for the study of metabolism at the genome scale. To generate meaningful predictions, however, these generalized human models must first be tailored for specific cell or tissue sub-types. Here we first present two improved algorithms for (1) the generation of these context-specific metabolic models based on omics data, and (2) Monte-Carlo sampling of the metabolic model ux space. By applying these methods to generate and analyze context-specific metabolic models of diverse solid cancer cell line data, and primary leukemia pediatric patient biopsies, we demonstrate how the methodology presented in this study can generate insights into the rewiring differences across solid tumors and blood cancers.
癌症代谢与周围健康组织的代谢显著不同,并且在不同癌症类型之间具有极大的异质性。虽然这些代谢差异为癌症治疗提供了有前景的途径,但在理解恶性组织中代谢如何重新布线方面仍有许多工作要做。为此,基于约束的模型为在基因组规模上研究代谢提供了强大的计算工具。然而,为了产生有意义的预测,这些通用的人类模型必须首先针对特定的细胞或组织亚型进行定制。在这里,我们首先提出两种改进的算法,用于(1)基于组学数据生成这些特定背景的代谢模型,以及(2)对代谢模型通量空间进行蒙特卡罗采样。通过应用这些方法生成和分析多种实体癌细胞系数据以及原发性白血病儿科患者活检的特定背景代谢模型,我们展示了本研究中提出的方法如何能够深入了解实体瘤和血癌之间的重新布线差异。