Suppr超能文献

基于基准的方法重建代谢网络以研究癌症代谢。

A benchmark-driven approach to reconstruct metabolic networks for studying cancer metabolism.

机构信息

Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.

Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.

出版信息

PLoS Comput Biol. 2019 Apr 22;15(4):e1006936. doi: 10.1371/journal.pcbi.1006936. eCollection 2019 Apr.

Abstract

Genome-scale metabolic modeling has emerged as a promising way to study the metabolic alterations underlying cancer by identifying novel drug targets and biomarkers. To date, several computational methods have been developed to integrate high-throughput data with existing human metabolic reconstructions to generate context-specific cancer metabolic models. Despite a number of studies focusing on benchmarking the context-specific algorithms, no quantitative assessment has been made to compare the predictive performance of these methods. Here, we integrated various and different datasets used in previous works to design a quantitative platform to examine functional and consistency performance of several existing genome-scale cancer modeling approaches. Next, we used the results obtained here to develop a method for the reconstruction of context-specific metabolic models. We then compared the predictive power and consistency of networks generated by our method to other computational approaches investigated here. Our results showed a satisfactory performance of the developed method in most of the benchmarks. This benchmarking platform is of particular use in algorithm selection and assessing the performance of newly developed algorithms. More importantly, it can serve as guidelines for designing and developing new methods focusing on weaknesses and strengths of existing algorithms.

摘要

基因组规模代谢建模已成为一种有前途的研究方法,通过鉴定新的药物靶点和生物标志物来研究癌症的代谢变化。迄今为止,已经开发了几种计算方法来将高通量数据与现有的人代谢重建相结合,以生成特定于上下文的癌症代谢模型。尽管有许多研究专注于对特定于上下文的算法进行基准测试,但尚未对这些方法的预测性能进行定量评估。在这里,我们整合了以前工作中使用的各种不同数据集,设计了一个定量平台来检查几种现有的基因组规模癌症建模方法的功能和一致性性能。接下来,我们使用这里获得的结果来开发一种用于重建特定于上下文的代谢模型的方法。然后,我们将我们的方法生成的网络的预测能力和一致性与这里研究的其他计算方法进行了比较。我们的结果表明,该方法在大多数基准测试中表现出令人满意的性能。该基准测试平台特别适用于算法选择和评估新开发算法的性能。更重要的是,它可以为设计和开发新方法提供指导,重点关注现有算法的优缺点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42d8/6497301/3f8e2fa62f72/pcbi.1006936.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验