Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.
PLoS Comput Biol. 2021 Feb 11;17(2):e1008730. doi: 10.1371/journal.pcbi.1008730. eCollection 2021 Feb.
The correct identification of metabolic activity in tissues or cells under different conditions can be extremely elusive due to mechanisms such as post-transcriptional modification of enzymes or different rates in protein degradation, making difficult to perform predictions on the basis of gene expression alone. Context-specific metabolic network reconstruction can overcome some of these limitations by leveraging the integration of multi-omics data into genome-scale metabolic networks (GSMN). Using the experimental information, context-specific models are reconstructed by extracting from the generic GSMN the sub-network most consistent with the data, subject to biochemical constraints. One advantage is that these context-specific models have more predictive power since they are tailored to the specific tissue, cell or condition, containing only the reactions predicted to be active in such context. However, an important limitation is that there are usually many different sub-networks that optimally fit the experimental data. This set of optimal networks represent alternative explanations of the possible metabolic state. Ignoring the set of possible solutions reduces the ability to obtain relevant information about the metabolism and may bias the interpretation of the true metabolic states. In this work we formalize the problem of enumerating optimal metabolic networks and we introduce DEXOM, an unified approach for diversity-based enumeration of context-specific metabolic networks. We developed different strategies for this purpose and we performed an exhaustive analysis using simulated and real data. In order to analyze the extent to which these results are biologically meaningful, we used the alternative solutions obtained with the different methods to measure: 1) the improvement of in silico predictions of essential genes in Saccharomyces cerevisiae using ensembles of metabolic network; and 2) the detection of alternative enriched pathways in different human cancer cell lines. We also provide DEXOM as an open-source library compatible with COBRA Toolbox 3.0, available at https://github.com/MetExplore/dexom.
由于酶的转录后修饰或蛋白质降解率不同等机制,在不同条件下对组织或细胞中的代谢活性进行正确识别可能极其困难,因此仅基于基因表达进行预测变得困难。通过将多组学数据整合到基因组规模代谢网络(GSMN)中,可以利用特定于上下文的代谢网络重建来克服这些限制中的一些。使用实验信息,通过从通用 GSMN 中提取与数据最一致的子网,并受生化约束的限制,重建特定于上下文的模型。一个优点是,这些特定于上下文的模型具有更高的预测能力,因为它们是针对特定的组织、细胞或条件量身定制的,仅包含在这种情况下预测为活跃的反应。然而,一个重要的限制是,通常有许多不同的子网可以最佳地拟合实验数据。这组最优网络代表了可能的代谢状态的替代解释。忽略可能解决方案的集合会降低从代谢中获取相关信息的能力,并可能使对真实代谢状态的解释产生偏差。在这项工作中,我们形式化了枚举最优代谢网络的问题,并引入了 DEXOM,一种基于多样性的特定于上下文的代谢网络枚举的统一方法。为此,我们开发了不同的策略,并使用模拟和真实数据进行了详尽的分析。为了分析这些结果在多大程度上具有生物学意义,我们使用不同方法获得的替代解决方案来衡量:1)使用代谢网络的集合来改进酿酒酵母必需基因的计算预测;2)在不同的人类癌细胞系中检测替代富集途径。我们还提供了 DEXOM,它是一个与 COBRA Toolbox 3.0 兼容的开源库,可在 https://github.com/MetExplore/dexom 上获得。