Qi Haiying, Casalena Gabriella, Shi Shaolin, Yu Liping, Ebefors Kerstin, Sun Yezhou, Zhang Weijia, D'Agati Vivette, Schlondorff Detlef, Haraldsson Börje, Böttinger Erwin, Daehn Ilse
Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.
Department of Molecular and Clinical Medicine/Nephrology, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
Diabetes. 2017 Mar;66(3):763-778. doi: 10.2337/db16-0695. Epub 2016 Nov 29.
The molecular signaling mechanisms between glomerular cell types during initiation/progression of diabetic kidney disease (DKD) remain poorly understood. We compared the early transcriptome profile between DKD-resistant C57BL/6J and DKD-susceptible DBA/2J (D2) glomeruli and demonstrated a significant downregulation of essential mitochondrial genes in glomeruli from diabetic D2 mice, but not in C57BL/6J, with comparable hyperglycemia. Diabetic D2 mice manifested increased mitochondrial DNA lesions (8-oxoguanine) exclusively localized to glomerular endothelial cells after 3 weeks of diabetes, and these accumulated over time in addition to increased urine secretion of 8-oxo-deoxyguanosine. Detailed assessment of glomerular capillaries from diabetic D2 mice demonstrated early signs of endothelial injury and loss of fenestrae. Glomerular endothelial mitochondrial dysfunction was associated with increased glomerular endothelin-1 receptor type A (Ednra) expression and increased circulating endothelin-1 (Edn1). Selective Ednra blockade or mitochondrial-targeted reactive oxygen species scavenging prevented mitochondrial oxidative stress of endothelial cells and ameliorated diabetes-induced endothelial injury, podocyte loss, albuminuria, and glomerulosclerosis. In human DKD, increased urine 8-oxo-deoxyguanosine was associated with rapid DKD progression, and biopsies from patients with DKD showed increased mitochondrial DNA damage associated with glomerular endothelial EDNRA expression. Our studies show that DKD susceptibility was linked to mitochondrial dysfunction, mediated largely by Edn1-Ednra in glomerular endothelial cells representing an early event in DKD progression, and suggest that cross talk between glomerular endothelial injury and podocytes leads to defects and depletion, albuminuria, and glomerulosclerosis.
在糖尿病肾病(DKD)起始/进展过程中,肾小球细胞类型之间的分子信号传导机制仍知之甚少。我们比较了抗DKD的C57BL/6J和易患DKD的DBA/2J(D2)小鼠肾小球的早期转录组谱,结果显示,在血糖水平相当的情况下,糖尿病D2小鼠肾小球中必需的线粒体基因显著下调,而C57BL/6J小鼠则没有。糖尿病D2小鼠在糖尿病3周后,线粒体DNA损伤(8-氧代鸟嘌呤)仅在肾小球内皮细胞中增加,并且除了8-氧代脱氧鸟苷的尿分泌增加外,这些损伤还会随时间累积。对糖尿病D2小鼠肾小球毛细血管的详细评估显示出内皮损伤和窗孔丧失的早期迹象。肾小球内皮线粒体功能障碍与肾小球内皮素-1 A型受体(Ednra)表达增加和循环内皮素-1(Edn1)升高有关。选择性阻断Ednra或清除线粒体靶向的活性氧可防止内皮细胞的线粒体氧化应激,并改善糖尿病诱导的内皮损伤、足细胞丢失、蛋白尿和肾小球硬化。在人类DKD中,尿8-氧代脱氧鸟苷增加与DKD快速进展相关,DKD患者的活检显示与肾小球内皮EDNRA表达相关的线粒体DNA损伤增加。我们的研究表明,DKD易感性与线粒体功能障碍有关,主要由肾小球内皮细胞中的Edn1-Ednra介导,这是DKD进展中的早期事件,并表明肾小球内皮损伤与足细胞之间的相互作用导致缺陷和耗竭、蛋白尿和肾小球硬化。