Center for High Technology Materials, University of New Mexico, Albuquerque, NM 87106, USA.
Nanotechnology. 2017 Jan 13;28(2):025202. doi: 10.1088/0957-4484/28/2/025202. Epub 2016 Dec 1.
Controlled bottom-up selective-area epitaxy (SAE) is used to tailor the morphology and photoluminescence properties of GaN/InGaN core-shell nanowire arrays. The nanowires are grown on c-plane sapphire substrates using pulsed-mode metal organic chemical vapor deposition. By varying the dielectric mask configuration and growth conditions, we achieve GaN nanowire cores with diameters ranging from 80 to 700 nm that exhibit various degrees of polar, semipolar, and nonpolar faceting. A single InGaN quantum well (QW) and GaN barrier shell is also grown on the GaN nanowire cores and micro-photoluminescence is obtained and analyzed for a variety of nanowire dimensions, array pitch spacings, and aperture diameters. By increasing the nanowire pitch spacing on the same growth wafer, the emission wavelength redshifts from 440 to 520 nm, while increasing the aperture diameter results in a ∼35 nm blueshift. The thickness of one QW/barrier period as a function of pitch and aperture diameter is inferred using scanning electron microscopy, with larger pitches showing significantly thicker QWs. Significant increases in indium composition were predicted for larger pitches and smaller aperture diameters. The results are interpreted in terms of local growth conditions and adatom capture radius around the nanowires. This work provides significant insight into the effects of mask configuration and growth conditions on the nanowire properties and is applicable to the engineering of monolithic multi-color nanowire LEDs on a single chip.
采用受控自上而下的选择性区域外延(SAE)来调整 GaN/InGaN 核壳纳米线阵列的形态和光致发光特性。纳米线是在 c 面蓝宝石衬底上使用脉冲模式金属有机化学气相沉积法生长的。通过改变介电掩模的配置和生长条件,我们实现了 GaN 纳米线核的直径从 80nm 到 700nm 的变化,并且表现出不同程度的极性、半极性和非极性刻面。还在 GaN 纳米线核上生长了单个 InGaN 量子阱(QW)和 GaN 势垒壳,并且对各种纳米线尺寸、阵列间距和孔径进行了微光致发光的获取和分析。通过在相同的生长晶圆上增加纳米线的间距,可以使发射波长从 440nm 红移到 520nm,而增加孔径会导致约 35nm 的蓝移。使用扫描电子显微镜推断出一个 QW/势垒周期的厚度与间距和孔径直径的关系,较大的间距显示出明显更厚的 QW。较大的间距和较小的孔径直径预测会导致铟成分的显著增加。结果根据纳米线周围的局部生长条件和原子捕获半径进行解释。这项工作为掩模配置和生长条件对纳米线性质的影响提供了重要的见解,并且适用于在单个芯片上工程化单片多色纳米线 LED。