1 Département de Mathématiques, Université du Québec à Montréal, Québec, Canada.
2 Département de Médecine Sociale et préventive, Université Laval, Québec, Canada.
Stat Methods Med Res. 2018 Aug;27(8):2428-2436. doi: 10.1177/0962280216680834. Epub 2016 Dec 29.
Estimating causal effects requires important prior subject-matter knowledge and, sometimes, sophisticated statistical tools. The latter is especially true when targeting the causal effect of a time-varying exposure in a longitudinal study. Marginal structural models are a relatively new class of causal models that effectively deal with the estimation of the effects of time-varying exposures. Marginal structural models have traditionally been embedded in the counterfactual framework to causal inference. In this paper, we use the causal graph framework to enhance the implementation of marginal structural models. We illustrate our approach using data from a prospective cohort study, the Honolulu Heart Program. These data consist of 8006 men at baseline. To illustrate our approach, we focused on the estimation of the causal effect of physical activity on blood pressure, which were measured at three time points. First, a causal graph is built to encompass prior knowledge. This graph is then validated and improved utilizing structural equation models. We estimated the aforementioned causal effect using marginal structural models for repeated measures and guided the implementation of the models with the causal graph. By employing the causal graph framework, we also show the validity of fitting conditional marginal structural models for repeated measures in the context implied by our data.
估计因果效应需要重要的先验主题知识,有时还需要复杂的统计工具。当目标是在纵向研究中针对时变暴露的因果效应时,后者尤其如此。边缘结构模型是一类相对较新的因果模型,可有效地处理时变暴露效应的估计问题。边缘结构模型传统上被嵌入反事实框架中进行因果推理。在本文中,我们使用因果图框架来增强边缘结构模型的实施。我们使用来自前瞻性队列研究“檀香山心脏计划”的数据来说明我们的方法。这些数据包括 8006 名基线男性。为了说明我们的方法,我们重点关注了体力活动对血压的因果效应的估计,这些血压在三个时间点进行了测量。首先,构建一个因果图来包含先验知识。然后,利用结构方程模型验证和改进该图。我们使用重复测量的边缘结构模型来估计上述因果效应,并利用因果图来指导模型的实施。通过使用因果图框架,我们还展示了在我们数据所暗示的情况下,拟合重复测量条件边缘结构模型的有效性。