Suppr超能文献

用于神经内分泌肿瘤细胞分割的无监督形状先验建模

UNSUPERVISED SHAPE PRIOR MODELING FOR CELL SEGMENTATION IN NEUROENDOCRINE TUMOR.

作者信息

Xing Fuyong, Yang Lin

机构信息

Department of Electrical and Computer Engineering, University of Florida; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida.

J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2015 Apr;2015:1443-1446. doi: 10.1109/ISBI.2015.7164148. Epub 2015 Jul 23.

Abstract

Automated and accurate cell segmentation provides support for many quantitative analyses on digitized neuroendocrine tumor (NET) images. It is a challenging task due to complex variations of cell characteristics. In this paper, we incorporate unsupervised shape priors into an efficient repulsive deformable model for automated cell segmentation on NET images. Unlike other supervised learning based shape models, which usually require a large number of annotated data for training, the proposed algorithm is an unsupervised approach that applies group similarity to shape constraints to avoid any labor intensive annotation. The algorithm is extensively tested on 51 NET images, and the comparative experiments with the state of the arts demonstrate the superior performance of this method using an unsupervised shape model.

摘要

自动且准确的细胞分割为数字化神经内分泌肿瘤(NET)图像的许多定量分析提供了支持。由于细胞特征的复杂变化,这是一项具有挑战性的任务。在本文中,我们将无监督形状先验纳入一个有效的排斥性可变形模型,用于NET图像上的自动细胞分割。与其他基于监督学习的形状模型不同,后者通常需要大量带注释的数据进行训练,本文提出的算法是一种无监督方法,它将组相似性应用于形状约束,以避免任何劳动密集型的注释工作。该算法在51幅NET图像上进行了广泛测试,与现有技术的对比实验证明了这种使用无监督形状模型的方法具有卓越性能。

相似文献

1
UNSUPERVISED SHAPE PRIOR MODELING FOR CELL SEGMENTATION IN NEUROENDOCRINE TUMOR.
Proc IEEE Int Symp Biomed Imaging. 2015 Apr;2015:1443-1446. doi: 10.1109/ISBI.2015.7164148. Epub 2015 Jul 23.
2
An Automatic Learning-Based Framework for Robust Nucleus Segmentation.
IEEE Trans Med Imaging. 2016 Feb;35(2):550-66. doi: 10.1109/TMI.2015.2481436. Epub 2015 Sep 23.
3
Unsupervised morphological segmentation of tissue compartments in histopathological images.
PLoS One. 2017 Nov 30;12(11):e0188717. doi: 10.1371/journal.pone.0188717. eCollection 2017.
4
Abdominal multi-organ segmentation from CT images using conditional shape-location and unsupervised intensity priors.
Med Image Anal. 2015 Dec;26(1):1-18. doi: 10.1016/j.media.2015.06.009. Epub 2015 Jul 4.
5
Automated Semantic Segmentation of Red Blood Cells for Sickle Cell Disease.
IEEE J Biomed Health Inform. 2020 Nov;24(11):3095-3102. doi: 10.1109/JBHI.2020.3000484. Epub 2020 Nov 4.
6
Fast Cell Segmentation Using Scalable Sparse Manifold Learning and Affine Transform-approximated Active Contour.
Med Image Comput Comput Assist Interv. 2015 Oct;9351:332-339. doi: 10.1007/978-3-319-24574-4_40. Epub 2015 Nov 18.
7
Deformable segmentation via sparse representation and dictionary learning.
Med Image Anal. 2012 Oct;16(7):1385-96. doi: 10.1016/j.media.2012.07.007. Epub 2012 Aug 23.
9
A Semi-Supervised Method for Tumor Segmentation in Mammogram Images.
J Med Signals Sens. 2020 Feb 6;10(1):12-18. doi: 10.4103/jmss.JMSS_62_18. eCollection 2020 Jan-Mar.

引用本文的文献

1
Evaluating Nuclear Membrane Irregularity for the Classification of Cervical Squamous Epithelial Cells.
PLoS One. 2016 Oct 14;11(10):e0164389. doi: 10.1371/journal.pone.0164389. eCollection 2016.
2
Robust Nucleus/Cell Detection and Segmentation in Digital Pathology and Microscopy Images: A Comprehensive Review.
IEEE Rev Biomed Eng. 2016;9:234-63. doi: 10.1109/RBME.2016.2515127. Epub 2016 Jan 6.

本文引用的文献

1
Robust selection-based sparse shape model for lung cancer image segmentation.
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):404-12. doi: 10.1007/978-3-642-40760-4_51.
2
Cell segmentation in phase contrast microscopy images via semi-supervised classification over optics-related features.
Med Image Anal. 2013 Oct;17(7):746-65. doi: 10.1016/j.media.2013.04.004. Epub 2013 Apr 29.
3
Multireference level set for the characterization of nuclear morphology in glioblastoma multiforme.
IEEE Trans Biomed Eng. 2012 Dec;59(12):3460-7. doi: 10.1109/TBME.2012.2218107. Epub 2012 Sep 10.
4
Deformable segmentation via sparse representation and dictionary learning.
Med Image Anal. 2012 Oct;16(7):1385-96. doi: 10.1016/j.media.2012.07.007. Epub 2012 Aug 23.
5
An integrated region-, boundary-, shape-based active contour for multiple object overlap resolution in histological imagery.
IEEE Trans Med Imaging. 2012 Jul;31(7):1448-60. doi: 10.1109/TMI.2012.2190089. Epub 2012 Apr 5.
6
Robust segmentation of overlapping cells in histopathology specimens using parallel seed detection and repulsive level set.
IEEE Trans Biomed Eng. 2012 Mar;59(3):754-65. doi: 10.1109/TBME.2011.2179298. Epub 2011 Dec 9.
7
Partitioning histopathological images: an integrated framework for supervised color-texture segmentation and cell splitting.
IEEE Trans Med Imaging. 2011 Sep;30(9):1661-77. doi: 10.1109/TMI.2011.2141674. Epub 2011 Apr 11.
8
Improved automatic detection and segmentation of cell nuclei in histopathology images.
IEEE Trans Biomed Eng. 2010 Apr;57(4):841-52. doi: 10.1109/TBME.2009.2035102. Epub 2009 Oct 30.
9
Active contours without edges.
IEEE Trans Image Process. 2001;10(2):266-77. doi: 10.1109/83.902291.
10
Repulsive force based snake model to segment and track neuronal axons in 3D microscopy image stacks.
Neuroimage. 2006 Oct 1;32(4):1608-20. doi: 10.1016/j.neuroimage.2006.05.036. Epub 2006 Jul 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验