Suppr超能文献

Nogo-A调节出生后脑内的血管网络结构。

Nogo-A regulates vascular network architecture in the postnatal brain.

作者信息

Wälchli Thomas, Ulmann-Schuler Alexandra, Hintermüller Christoph, Meyer Eric, Stampanoni Marco, Carmeliet Peter, Emmert Maximilian Y, Bozinov Oliver, Regli Luca, Schwab Martin E, Vogel Johannes, Hoerstrup Simon P

机构信息

1 Group of CNS Angiogenesis and Neurovascular Link, and Physician-Scientist Program, Institute for Regenerative Medicine, Neuroscience Center Zurich, and Division of Neurosurgery, University and University Hospital Zurich, Switzerland, and Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.

2 Division of Neurosurgery and Laboratory of Molecular Neuro-Oncology, University Hospital Zurich, Zurich, Switzerland.

出版信息

J Cereb Blood Flow Metab. 2017 Feb;37(2):614-631. doi: 10.1177/0271678X16675182. Epub 2016 Nov 13.

Abstract

Recently, we discovered a new role for the well-known axonal growth inhibitory molecule Nogo-A as a negative regulator of angiogenesis in the developing central nervous system. However, how Nogo-A affected the three-dimensional (3D) central nervous system (CNS) vascular network architecture remained unknown. Here, using vascular corrosion casting, hierarchical, synchrotron radiation μCT-based network imaging and computer-aided network analysis, we found that genetic ablation of Nogo-A significantly increased the three-dimensional vascular volume fraction in the postnatal day 10 (P10) mouse brain. More detailed analysis of the cerebral cortex revealed that this effect was mainly due to an increased number of capillaries and capillary branchpoints. Interestingly, other vascular parameters such as vessel diameter, -length, -tortuosity, and -volume were comparable between both genotypes for non-capillary vessels and capillaries. Taken together, our three-dimensional data showing more vessel segments and branchpoints at unchanged vessel morphology suggest that stimulated angiogenesis upon Nogo-A gene deletion results in the insertion of complete capillary micro-networks and not just single vessels into existing vascular networks. These findings significantly enhance our understanding of how angiogenesis, vascular remodeling, and three-dimensional vessel network architecture are regulated during central nervous system development. Nogo-A may therefore be a potential novel target for angiogenesis-dependent central nervous system pathologies such as brain tumors or stroke.

摘要

最近,我们发现了著名的轴突生长抑制分子Nogo-A在发育中的中枢神经系统中作为血管生成负调节因子的新作用。然而,Nogo-A如何影响三维(3D)中枢神经系统(CNS)血管网络结构仍不清楚。在这里,我们使用血管铸型、基于同步辐射μCT的分层网络成像和计算机辅助网络分析,发现Nogo-A基因敲除显著增加了出生后第10天(P10)小鼠大脑中的三维血管体积分数。对大脑皮层更详细的分析表明,这种效应主要是由于毛细血管和毛细血管分支点数量的增加。有趣的是,对于非毛细血管和毛细血管,两种基因型之间的其他血管参数,如血管直径、长度、迂曲度和体积,是可比的。综上所述,我们的三维数据显示在血管形态不变的情况下有更多的血管段和分支点,这表明Nogo-A基因缺失后刺激血管生成会导致完整的毛细血管微网络插入,而不仅仅是单个血管插入现有的血管网络。这些发现显著增强了我们对中枢神经系统发育过程中血管生成、血管重塑和三维血管网络结构如何被调节的理解。因此,Nogo-A可能是血管生成依赖性中枢神经系统疾病(如脑肿瘤或中风)的潜在新靶点。

相似文献

1
Nogo-A regulates vascular network architecture in the postnatal brain.
J Cereb Blood Flow Metab. 2017 Feb;37(2):614-631. doi: 10.1177/0271678X16675182. Epub 2016 Nov 13.
4
Nogo-A is a negative regulator of CNS angiogenesis.
Proc Natl Acad Sci U S A. 2013 May 21;110(21):E1943-52. doi: 10.1073/pnas.1216203110. Epub 2013 Apr 26.
5
Nogo-A targeted therapy promotes vascular repair and functional recovery following stroke.
Proc Natl Acad Sci U S A. 2019 Jul 9;116(28):14270-14279. doi: 10.1073/pnas.1905309116. Epub 2019 Jun 24.
6
A 3D-investigation shows that angiogenesis in primate cerebral cortex mainly occurs at capillary level.
Int J Dev Neurosci. 2009 Apr;27(2):185-96. doi: 10.1016/j.ijdevneu.2008.10.006. Epub 2008 Nov 7.
7
Vascularisation of the central nervous system.
Mech Dev. 2015 Nov;138 Pt 1:26-36. doi: 10.1016/j.mod.2015.07.001. Epub 2015 Jul 26.
8
9
A new role for Nogo as a regulator of vascular remodeling.
Nat Med. 2004 Apr;10(4):382-8. doi: 10.1038/nm1020. Epub 2004 Mar 21.
10
Nogo-A represses anatomical and synaptic plasticity in the central nervous system.
Physiology (Bethesda). 2013 May;28(3):151-63. doi: 10.1152/physiol.00052.2012.

引用本文的文献

1
Identification of a T2-hyperintense Perivascular Space in Brain Arteriovenous Malformations.
In Vivo. 2025 Jan-Feb;39(1):280-291. doi: 10.21873/invivo.13826.
2
An unexpected role of neurite outgrowth inhibitor A as regulator of tooth enamel formation.
Int J Oral Sci. 2024 Oct 20;16(1):60. doi: 10.1038/s41368-024-00323-x.
3
Single-cell atlas of the human brain vasculature across development, adulthood and disease.
Nature. 2024 Aug;632(8025):603-613. doi: 10.1038/s41586-024-07493-y. Epub 2024 Jul 10.
4
Shaping the brain vasculature in development and disease in the single-cell era.
Nat Rev Neurosci. 2023 May;24(5):271-298. doi: 10.1038/s41583-023-00684-y. Epub 2023 Mar 20.
5
Association of Nogo-A Gene Polymorphisms with Cerebral Palsy in Southern China: A Case-Control Study.
Dev Neurosci. 2023;45(1):8-18. doi: 10.1159/000527801. Epub 2022 Nov 2.
6
Endothelial Suppresses Cancer Cell Proliferation via a Paracrine TGF-β/Smad Signaling.
Cells. 2022 Sep 30;11(19):3084. doi: 10.3390/cells11193084.
7
Unbiased analysis of mouse brain endothelial networks from two- or three-dimensional fluorescence images.
Neurophotonics. 2022 Jul;9(3):031916. doi: 10.1117/1.NPh.9.3.031916. Epub 2022 May 18.
9
Engineering strategies towards overcoming bleeding and glial scar formation around neural probes.
Cell Tissue Res. 2022 Mar;387(3):461-477. doi: 10.1007/s00441-021-03567-9. Epub 2022 Jan 14.

本文引用的文献

1
Tetraspanin-3 is an organizer of the multi-subunit Nogo-A signaling complex.
J Cell Sci. 2015 Oct 1;128(19):3583-96. doi: 10.1242/jcs.167981. Epub 2015 Aug 19.
2
Wiring the Vascular Network with Neural Cues: A CNS Perspective.
Neuron. 2015 Jul 15;87(2):271-96. doi: 10.1016/j.neuron.2015.06.038.
3
Quantitative assessment of angiogenesis, perfused blood vessels and endothelial tip cells in the postnatal mouse brain.
Nat Protoc. 2015 Jan;10(1):53-74. doi: 10.1038/nprot.2015.002. Epub 2014 Dec 11.
4
Joint 3-D vessel segmentation and centerline extraction using oblique Hough forests with steerable filters.
Med Image Anal. 2015 Jan;19(1):220-49. doi: 10.1016/j.media.2014.09.007. Epub 2014 Oct 15.
5
Isolating specific cell and tissue compartments from 3D images for quantitative regional distribution analysis using novel computer algorithms.
J Neurosci Methods. 2014 Apr 15;226:42-56. doi: 10.1016/j.jneumeth.2014.01.011. Epub 2014 Jan 30.
6
The sphingolipid receptor S1PR2 is a receptor for Nogo-a repressing synaptic plasticity.
PLoS Biol. 2014 Jan;12(1):e1001763. doi: 10.1371/journal.pbio.1001763. Epub 2014 Jan 14.
7
Sphingosine 1-phosphate signalling.
Development. 2014 Jan;141(1):5-9. doi: 10.1242/dev.094805.
8
Perturbed neural activity disrupts cerebral angiogenesis during a postnatal critical period.
Nature. 2014 Jan 16;505(7483):407-11. doi: 10.1038/nature12821. Epub 2013 Dec 4.
9
The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow.
Nat Neurosci. 2013 Jul;16(7):889-97. doi: 10.1038/nn.3426. Epub 2013 Jun 9.
10
Nogo-A represses anatomical and synaptic plasticity in the central nervous system.
Physiology (Bethesda). 2013 May;28(3):151-63. doi: 10.1152/physiol.00052.2012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验