Eaton Anne A, Pesce Catherine E, Murphy James O, Stempel Michelle M, Patil Sujata M, Brogi Edi, Hudis Clifford A, El-Tamer Mahmoud
Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Department of Surgical Oncology, NorthShore University HealthSystem, Evanston, IL, USA.
Breast Cancer Res Treat. 2017 Feb;161(3):435-441. doi: 10.1007/s10549-016-4069-4. Epub 2016 Dec 7.
OncotypeDX, a multi-gene expression assay, has been incorporated into clinical practice as a prognostic and predictive tool. However, its use in resource-constrained international healthcare systems is limited. Here we develop and validate a simplified model using clinicopathologic criteria to predict OncotypeDX score.
Patients with estrogen receptor (ER) and/or progesterone receptor (PR)-positive and HER2-negative invasive ductal carcinoma for whom the OncotypeDX test was successfully performed between 09/2008 and 12/2011 were retrospectively identified. Tumor size, nuclear and histologic grade, lymphovascular invasion, and ER and PR status were extracted from pathology reports. Data were split into a training dataset comprising women tested 09/2008-04/2011, and a validation dataset comprising women tested 04/2011-12/2011. Using the training dataset, linear regression analysis was used to identify factors associated with OncotypeDX score, and to create a simplified risk score and identify risk cutoffs.
Estrogen and progesterone receptors, tumor size, nuclear and histologic grades, and lymphovascular involvement were independently associated with OncotypeDX. The full model explained 39% of the variation in the test data, and the simplified risk score and cutoffs assigned 57% of patients in the test data to the correct risk category (OncotypeDX score <18, 18-30, >30). 41% of patients were predicted to have OncotypeDX score <18, of these 83, 16, and 2% had true scores of <18, 18-30, and >30, respectively.
Awaiting an inexpensive test that is prognostic and predictive, our simplified tool allows clinicians to identify a fairly large group of patients (41%) with very low chance of having high-risk disease (2%).
OncotypeDX是一种多基因表达检测方法,已作为一种预后和预测工具应用于临床实践。然而,其在资源有限的国际医疗系统中的应用受到限制。在此,我们开发并验证了一种使用临床病理标准来预测OncotypeDX评分的简化模型。
回顾性纳入2008年9月至2011年12月期间成功进行OncotypeDX检测的雌激素受体(ER)和/或孕激素受体(PR)阳性、HER2阴性浸润性导管癌患者。从病理报告中提取肿瘤大小、核分级和组织学分级、淋巴管浸润以及ER和PR状态。数据被分为一个训练数据集(包括2008年9月至2011年4月接受检测的女性)和一个验证数据集(包括2011年4月至12月接受检测的女性)。使用训练数据集,通过线性回归分析来确定与OncotypeDX评分相关的因素,并创建一个简化风险评分并确定风险临界值。
雌激素和孕激素受体、肿瘤大小、核分级和组织学分级以及淋巴管受累情况均与OncotypeDX独立相关。完整模型解释了检测数据中39%的变异,简化风险评分和临界值将检测数据中57%的患者分配到正确的风险类别(OncotypeDX评分<18、18 - 30、>30)。41%的患者被预测OncotypeDX评分<18,其中分别有83%、16%和2%的患者真实评分<18、18 - 30和>30。
在等待一种具有预后和预测性的廉价检测方法期间,我们的简化工具使临床医生能够识别出相当大比例(41%)的患者,这些患者患高危疾病的可能性非常低(2%)。