Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
Laboratoire de Biophotonique et Pharmacologie, UMR CNRS 7213, Université de Strasbourg, Faculté de Pharmacie, 67400 Illkirch, France.
Nat Commun. 2016 Dec 8;7:13544. doi: 10.1038/ncomms13544.
Super-resolution microscopy allows biological systems to be studied at the nanoscale, but has been restricted to providing only positional information. Here, we show that it is possible to perform multi-dimensional super-resolution imaging to determine both the position and the environmental properties of single-molecule fluorescent emitters. The method presented here exploits the solvatochromic and fluorogenic properties of nile red to extract both the emission spectrum and the position of each dye molecule simultaneously enabling mapping of the hydrophobicity of biological structures. We validated this by studying synthetic lipid vesicles of known composition. We then applied both to super-resolve the hydrophobicity of amyloid aggregates implicated in neurodegenerative diseases, and the hydrophobic changes in mammalian cell membranes. Our technique is easily implemented by inserting a transmission diffraction grating into the optical path of a localization-based super-resolution microscope, enabling all the information to be extracted simultaneously from a single image plane.
超分辨率显微镜可以在纳米尺度上研究生物系统,但只能提供位置信息。在这里,我们展示了一种可以进行多维超分辨率成像的方法,以确定单分子荧光发射器的位置和环境特性。这里提出的方法利用尼罗红的溶剂化和荧光性质,同时提取每个染料分子的发射光谱和位置,从而能够绘制生物结构的疏水性图谱。我们通过研究具有已知组成的合成脂质囊泡验证了这一点。然后,我们将其应用于超分辨神经退行性疾病中涉及的淀粉样蛋白聚集体的疏水性,以及哺乳动物细胞膜的疏水性变化。我们的技术可以通过将透射光栅插入基于定位的超分辨率显微镜的光路中轻松实现,从而可以从单个图像平面同时提取所有信息。