Lee Kyu-Tae, Yao Yuan, He Junwen, Fisher Brent, Sheng Xing, Lumb Matthew, Xu Lu, Anderson Mikayla A, Scheiman David, Han Seungyong, Kang Yongseon, Gumus Abdurrahman, Bahabry Rabab R, Lee Jung Woo, Paik Ungyu, Bronstein Noah D, Alivisatos A Paul, Meitl Matthew, Burroughs Scott, Hussain Muhammad Mustafa, Lee Jeong Chul, Nuzzo Ralph G, Rogers John A
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
Proc Natl Acad Sci U S A. 2016 Dec 20;113(51):E8210-E8218. doi: 10.1073/pnas.1617391113. Epub 2016 Dec 5.
Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV scheme ("+" denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.
新兴的聚光光伏(CPV)模块所达到的效率,甚至远超性能最佳的平板光伏技术,其架构有可能在直接法向辐照度(DNI)高的地区提供最低的能源成本。一个缺点是它们无法有效利用散射阳光,从而限制了广泛的地理部署,甚至在最有利的DNI条件下也会限制其性能。本研究介绍了一种模块设计,该设计将平板光伏的功能直接与最先进的CPV技术相结合,用于捕获直射和散射阳光,从而实现全球太阳辐射的光伏转换效率。该方案的具体示例利用了与两种不同CPV模块设计集成的商用硅(Si)电池,在这种设计中,它们捕获聚光光学器件无法有效导向的光,然后将其导向使用先进III-V半导体技术的大规模微型多结(MJ)太阳能电池阵列。在这种CPV方案(“+”表示增加了散射收集器)中,Si电池和MJ电池分别独立处理间接和直射太阳辐射。在北纬35.9886°(北卡罗来纳州达勒姆)、北纬40.1125°(伊利诺伊州邦德维尔)和北纬38.9072°(华盛顿特区)对CPV模块进行的实地实验研究表明,根据天气条件,与使用其他类似CPV模块获得的值相比,绝对模块效率提高了1.02%至8.45%。这些概念有可能扩大光伏发电最高效率形式的地理覆盖范围,并提高其成本效益。