Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, USA.
Nat Commun. 2011 Jun 14;2:343. doi: 10.1038/ncomms1318.
Unconventional methods to exploit monocrystalline silicon and other established materials in photovoltaic (PV) systems can create new engineering opportunities, device capabilities and cost structures. Here we show a type of composite luminescent concentrator PV system that embeds large scale, interconnected arrays of microscale silicon solar cells in thin matrix layers doped with luminophores. Photons that strike cells directly generate power in the usual manner; those incident on the matrix launch wavelength-downconverted photons that reflect and waveguide into the sides and bottom surfaces of the cells to increase further their power output, by more than 300% in examples reported here. Unlike conventional luminescent photovoltaics, this unusual design can be implemented in ultrathin, mechanically bendable formats. Detailed studies of design considerations and fabrication aspects for such devices, using both experimental and computational approaches, provide quantitative descriptions of the underlying materials science and optics.
非传统方法可用于开发光伏 (PV) 系统中的单晶硅和其他成熟材料,从而创造新的工程机会、器件性能和成本结构。在这里,我们展示了一种复合发光集中器 PV 系统,该系统将大规模、相互连接的微尺度硅太阳能电池阵列嵌入到掺杂有发光体的薄基质层中。直接照射到电池上的光子以通常的方式产生功率;那些照射到基质上的光子会发射波长下转换的光子,这些光子会反射并导波进入电池的侧面和底部表面,从而进一步提高其输出功率,这里报道的例子中提高了 300%以上。与传统的发光光伏相比,这种不寻常的设计可以在超薄、可机械弯曲的格式中实现。使用实验和计算方法对这些设备的设计考虑因素和制造方面进行了详细研究,为基础材料科学和光学提供了定量描述。