Department of Materials Science and Engineering, Beckman Institute for Advanced Science and Technology, and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
Nature. 2010 May 20;465(7296):329-33. doi: 10.1038/nature09054.
Compound semiconductors like gallium arsenide (GaAs) provide advantages over silicon for many applications, owing to their direct bandgaps and high electron mobilities. Examples range from efficient photovoltaic devices to radio-frequency electronics and most forms of optoelectronics. However, growing large, high quality wafers of these materials, and intimately integrating them on silicon or amorphous substrates (such as glass or plastic) is expensive, which restricts their use. Here we describe materials and fabrication concepts that address many of these challenges, through the use of films of GaAs or AlGaAs grown in thick, multilayer epitaxial assemblies, then separated from each other and distributed on foreign substrates by printing. This method yields large quantities of high quality semiconductor material capable of device integration in large area formats, in a manner that also allows the wafer to be reused for additional growths. We demonstrate some capabilities of this approach with three different applications: GaAs-based metal semiconductor field effect transistors and logic gates on plates of glass, near-infrared imaging devices on wafers of silicon, and photovoltaic modules on sheets of plastic. These results illustrate the implementation of compound semiconductors such as GaAs in applications whose cost structures, formats, area coverages or modes of use are incompatible with conventional growth or integration strategies.
化合物半导体(如砷化镓 GaAs)具有直接能隙和高电子迁移率等优点,在许多应用中优于硅。其应用范围从高效光伏器件到射频电子学和大多数形式的光电子学。然而,生长大尺寸、高质量的这些材料晶圆,并将其与硅或非晶衬底(如玻璃或塑料)紧密集成是昂贵的,这限制了它们的使用。在这里,我们通过使用在厚的多层外延组件中生长的 GaAs 或 AlGaAs 薄膜,并通过印刷将其彼此分离并分布在外国衬底上,来描述解决这些挑战的材料和制造概念。这种方法可以产生大量高质量的半导体材料,能够以允许晶圆重复用于额外生长的方式,以大面积格式进行器件集成。我们通过三种不同的应用来展示这种方法的一些能力:玻璃片上的基于 GaAs 的金属半导体场效应晶体管和逻辑门、硅片上的近红外成像器件以及塑料片上的光伏模块。这些结果说明了化合物半导体(如 GaAs)在成本结构、格式、面积覆盖率或使用模式与传统生长或集成策略不兼容的应用中的实现。