Geballe Laboratory for Advanced Materials, Stanford University , Stanford, California 94305, United States.
Nano Lett. 2017 Jan 11;17(1):407-413. doi: 10.1021/acs.nanolett.6b04378. Epub 2016 Dec 12.
Optical metasurfaces are two-dimensional optical elements composed of dense arrays of subwavelength optical antennas and afford on-demand manipulation of the basic properties of light waves. Following the pioneering works on active metasurfaces capable of modulating wave amplitude, there is now a growing interest to dynamically control other fundamental properties of light. Here, we present metasurfaces that facilitate electrical tuning of the reflection phase and polarization properties. To realize these devices, we leverage the properties of actively controlled plasmonic antennas and fundamental insights provided by coupled mode theory. Indium-tin-oxide is embedded into gap-plasmon resonator-antennas as it offers electrically tunable optical properties. By judiciously controlling the resonant properties of the antennas from under- to overcoupling regimes, we experimentally demonstrate tuning of the reflection phase over 180°. This work opens up new design strategies for active metasurfaces for displacement measurements and tunable waveplates.
光学超表面是由亚波长光学天线密集排列组成的二维光学元件,能够按需操控光波的基本属性。在能够调制波幅的主动超表面的开创性工作之后,人们现在越来越有兴趣动态控制光的其他基本属性。在这里,我们提出了有助于电调反射相位和偏振特性的超表面。为了实现这些器件,我们利用了主动控制等离子体天线的特性和耦合模理论提供的基本见解。铟锡氧化物被嵌入到间隙等离子体谐振器天线中,因为它提供了电可调谐的光学性质。通过巧妙地控制从欠耦合到过耦合状态的天线的共振特性,我们实验演示了反射相位在 180°范围内的调谐。这项工作为位移测量和可调波片的主动超表面开辟了新的设计策略。