Packer O, Hendrickson A E, Curcio C A
Department of Psychology, University of Washington, Seattle 98195.
J Comp Neurol. 1989 Oct 1;288(1):165-83. doi: 10.1002/cne.902880113.
In spite of the crucial role retinal photoreceptors play in mapping optical images into a pattern of neural excitation, there are no complete studies of photoreceptor topography in any primate retina. We have measured the spatial density and inner segment areas of cones and rods across the whole mounted retinas of three adult pigtail macaques (Macaca nemestrina) and constructed maps of photoreceptor density and inner segment diameter. These retinas contain an average of 3.1 million cones (2.8-3.3 million), with an average peak foveal cone density of 210,000 cones/mm2 (190,000-260,000 cones/mm2). Cone density falls steeply with increasing eccentricity, to 100,000 cones/mm2 at 200 microns from the fovea, and to 50,000 cones/mm2 at 750 microns. Imposed on this gradient is a "streak" of higher cone density along the horizontal meridian. At equivalent eccentricities, cone density is higher in nasal and inferior retina. Cone inner segments increase in diameter from 2.3 microns at the foveal center to 11 microns in far temporal retina and 10 microns in far nasal retina. These retinas contain an average of 60.1 million rods (44.9-75.3 million). Rod density is zero within 20 microns of the foveal center, increases to the crest of a "rod ring" at the eccentricity of the optic disk, and then declines. Central rod topography is asymmetric, with higher densities in superior retina. Density along the crest of the rod ring peaks in superior retina at 177,000 rods/mm2, dips as low as 120,000 rods/mm2 along the horizontal meridian, and increases to about 150,000 rods/mm2 in inferior retina. Far peripheral rod topography is relatively symmetric around the fovea. Rod inner segment diameter ranged from 1.5 microns in the fovea to 4 microns at the temporal edge and 3.4 microns at the nasal edge of the retina. At eccentricities exceeding 6 mm, rod inner segment diameter was greater temporally than nasally. Cone inner segments cover 85-90% of the central fovea, with extrareceptor space accounting for the remainder. Cone coverage declines with increasing eccentricity to 20% at the temporal edge and 35% at the nasal edge of the retina. In contrast, rod coverage increases from zero at the foveal center to a maximum of 65% in temporal retina and 50% in nasal retina. The photoreceptor topography of the pigtail macaque is qualitatively similar to that of other macaques and to humans. Photoreceptor topography is formed by a complex interaction between regional changes in cone and rod density and inner segment diameter.
尽管视网膜光感受器在将光学图像映射为神经兴奋模式中起着关键作用,但尚未有对任何灵长类动物视网膜光感受器拓扑结构的完整研究。我们测量了三只成年猪尾猕猴(食蟹猴)整个视网膜标本上视锥细胞和视杆细胞的空间密度及内段面积,并构建了光感受器密度和内段直径图谱。这些视网膜平均含有310万个视锥细胞(280万 - 330万个),中央凹视锥细胞平均峰值密度为210,000个/mm²(190,000 - 260,000个/mm²)。视锥细胞密度随着离心率增加而急剧下降,在距中央凹200微米处降至100,000个/mm²,在750微米处降至50,000个/mm²。在这个梯度上,沿着水平子午线存在一条视锥细胞密度较高的“条纹”。在相同离心率下,鼻侧和下侧视网膜的视锥细胞密度更高。视锥细胞内段直径从中央凹中心的2.3微米增加到颞侧远周边视网膜的11微米和鼻侧远周边视网膜的10微米。这些视网膜平均含有6010万个视杆细胞(4490万 - 7530万个)。视杆细胞密度在中央凹中心20微米范围内为零,在视神经盘离心率处增加到“视杆环”的峰值,然后下降。中央视杆细胞拓扑结构不对称,上侧视网膜密度较高。沿着视杆环峰值,上侧视网膜密度为177,000个/mm²,沿着水平子午线低至120,000个/mm²,在下侧视网膜增加到约150,000个/mm²。远周边视杆细胞拓扑结构在中央凹周围相对对称。视杆细胞内段直径从中央凹的1.5微米到视网膜颞侧边缘的4微米和鼻侧边缘的3.4微米。在离心率超过6毫米时,视杆细胞内段直径在颞侧大于鼻侧。视锥细胞内段覆盖中央凹的85 - 90%,其余为感受器外空间。视锥细胞覆盖率随着离心率增加而下降,在视网膜颞侧边缘降至20%,在鼻侧边缘降至35%。相比之下,视杆细胞覆盖率从中央凹中心的零增加到颞侧视网膜的最大65%和鼻侧视网膜的50%。猪尾猕猴的光感受器拓扑结构在质量上与其他猕猴和人类相似。光感受器拓扑结构是由视锥细胞和视杆细胞密度及内段直径的区域变化之间的复杂相互作用形成的。