Suppr超能文献

抑制核转运蛋白α4可减轻前列腺癌转移。

Inhibition of KPNA4 attenuates prostate cancer metastasis.

作者信息

Yang J, Lu C, Wei J, Guo Y, Liu W, Luo L, Fisch G, Li X

机构信息

Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA.

Department of Obstetrics and Gynaecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.

出版信息

Oncogene. 2017 May 18;36(20):2868-2878. doi: 10.1038/onc.2016.440. Epub 2016 Dec 12.

Abstract

Prostate cancer (PCa) is a common cancer in men. Although current treatments effectively palliate symptoms and prolong life, the metastatic PCa remains incurable. It is important to find biomarkers and targets to improve metastatic PCa diagnosis and treatment. Here we report a novel correlation between karyopherin α4 (KPNA4) and PCa pathological stages. KPNA4 mediates the cytoplasm-to-nucleus translocation of transcription factors, including nuclear factor kappa B, although its role in PCa was largely unknown. We find that knockdown of KPNA4 reduces cell migration in multiple PCa cell lines, suggesting a role of KPNA4 in PCa progression. Indeed, stable knockdown of KPNA4 significantly reduces PCa invasion and distant metastasis in mouse models. Functionally, KPNA4 alters tumor microenvironment in terms of macrophage polarization and osteoclastogenesis by modulating tumor necrosis factor (TNF)-α and -β. Further, KPNA4 is proved as a direct target of miR-708, a tumor-suppressive microRNA. We disclose the role of miR-708-KPNA4-TNF axes in PCa metastasis and KPNA4's potential as a novel biomarker for PCa metastasis.

摘要

前列腺癌(PCa)是男性常见的癌症。尽管目前的治疗方法能有效缓解症状并延长生命,但转移性PCa仍然无法治愈。寻找生物标志物和靶点以改善转移性PCa的诊断和治疗至关重要。在此,我们报告了核转运蛋白α4(KPNA4)与PCa病理分期之间的一种新关联。KPNA4介导转录因子(包括核因子κB)从细胞质到细胞核的转运,尽管其在PCa中的作用很大程度上尚不清楚。我们发现敲低KPNA4可减少多种PCa细胞系中的细胞迁移,提示KPNA4在PCa进展中发挥作用。事实上,在小鼠模型中稳定敲低KPNA4可显著降低PCa的侵袭和远处转移。在功能上,KPNA4通过调节肿瘤坏死因子(TNF)-α和-β改变肿瘤微环境中的巨噬细胞极化和破骨细胞生成。此外,KPNA4被证明是肿瘤抑制性微小RNA miR-708的直接靶点。我们揭示了miR-708-KPNA4-TNF轴在PCa转移中的作用以及KPNA4作为PCa转移新生物标志物的潜力。

相似文献

1
Inhibition of KPNA4 attenuates prostate cancer metastasis.
Oncogene. 2017 May 18;36(20):2868-2878. doi: 10.1038/onc.2016.440. Epub 2016 Dec 12.
2
Regulatory Role of mir-203 in Prostate Cancer Progression and Metastasis.
Clin Cancer Res. 2011 Aug 15;17(16):5287-98. doi: 10.1158/1078-0432.CCR-10-2619. Epub 2010 Dec 15.
3
MiR-203 down-regulates Rap1A and suppresses cell proliferation, adhesion and invasion in prostate cancer.
J Exp Clin Cancer Res. 2015 Jan 31;34(1):8. doi: 10.1186/s13046-015-0125-x.
4
MicroRNA-340 inhibits prostate cancer cell proliferation and metastasis by targeting the MDM2-p53 pathway.
Oncol Rep. 2016 Feb;35(2):887-95. doi: 10.3892/or.2015.4458. Epub 2015 Nov 26.
5
6
Tumour-suppressive microRNA-224 inhibits cancer cell migration and invasion via targeting oncogenic TPD52 in prostate cancer.
FEBS Lett. 2014 May 21;588(10):1973-82. doi: 10.1016/j.febslet.2014.04.020. Epub 2014 Apr 24.
7
MicroRNA-567 dysregulation contributes to carcinogenesis of breast cancer, targeting tumor cell proliferation, and migration.
Breast Cancer Res Treat. 2017 Feb;161(3):605-616. doi: 10.1007/s10549-016-4079-2. Epub 2016 Dec 20.
8
miR-195 Inhibits EMT by Targeting FGF2 in Prostate Cancer Cells.
PLoS One. 2015 Dec 9;10(12):e0144073. doi: 10.1371/journal.pone.0144073. eCollection 2015.
9
Vitamin D Deficiency Accelerates Coronary Artery Disease Progression in Swine.
Arterioscler Thromb Vasc Biol. 2016 Aug;36(8):1651-9. doi: 10.1161/ATVBAHA.116.307586. Epub 2016 Jun 2.
10
miR-152 controls migration and invasive potential by targeting TGFα in prostate cancer cell lines.
Prostate. 2013 Jul;73(10):1082-9. doi: 10.1002/pros.22656. Epub 2013 Mar 4.

引用本文的文献

2
VCP's nuclear journey: Initiated by interacting with KPNB1 to repair DNA damage.
Proc Natl Acad Sci U S A. 2025 May 13;122(19):e2416045122. doi: 10.1073/pnas.2416045122. Epub 2025 May 8.
3
A narrative review of papillary thyroid carcinoma-related long non-coding RNAs and their relevance to malignant tumors.
Transl Cancer Res. 2025 Mar 30;14(3):2125-2149. doi: 10.21037/tcr-24-1038. Epub 2025 Mar 27.
4
Revisiting the Role of Long Non-coding RNA PSMA3-AS1 in Human Cancers: Current Evidence and Future Directions.
Curr Pharm Des. 2025;31(21):1683-1695. doi: 10.2174/0113816128350406241223053744.
6
Multi-omics analysis of the oncogenic role of optic in human cancer.
Aging (Albany NY). 2023 Nov 16;15(22):12982-12997. doi: 10.18632/aging.205214.
8
The Double Face of miR-708: A Pan-Cancer Player with Dissociative Identity Disorder.
Genes (Basel). 2022 Dec 16;13(12):2375. doi: 10.3390/genes13122375.
9
circEZH2 is a dual suppressor of miR363/miR708 to promote EZH2 expression and prostate cancer progression.
Cancer Sci. 2023 Apr;114(4):1378-1395. doi: 10.1111/cas.15694. Epub 2022 Dec 28.
10
The Roles of Tumor-Associated Macrophages in Prostate Cancer.
J Oncol. 2022 Sep 7;2022:8580043. doi: 10.1155/2022/8580043. eCollection 2022.

本文引用的文献

1
Driven to metastasize: Kinases as potential therapeutic targets in prostate cancer.
Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):473-5. doi: 10.1073/pnas.1522938113. Epub 2016 Jan 8.
2
Cancer statistics, 2016.
CA Cancer J Clin. 2016 Jan-Feb;66(1):7-30. doi: 10.3322/caac.21332. Epub 2016 Jan 7.
3
Genomic profiling screens small molecules of metastatic prostate carcinoma.
Oncol Lett. 2015 Sep;10(3):1402-1408. doi: 10.3892/ol.2015.3472. Epub 2015 Jul 8.
5
ERβ regulation of NF-kB activation in prostate cancer is mediated by HIF-1.
Oncotarget. 2015 Nov 24;6(37):40247-54. doi: 10.18632/oncotarget.5377.
8
LEF1 targeting EMT in prostate cancer invasion is mediated by miR-181a.
Am J Cancer Res. 2015 Feb 15;5(3):1124-32. eCollection 2015.
9
Regulation of tumour necrosis factor signalling: live or let die.
Nat Rev Immunol. 2015 Jun;15(6):362-74. doi: 10.1038/nri3834.
10
MicroRNA biogenesis pathways in cancer.
Nat Rev Cancer. 2015 Jun;15(6):321-33. doi: 10.1038/nrc3932.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验