Suppr超能文献

群熵:从相空间几何经由群论到熵泛函

Group Entropies: From Phase Space Geometry to Entropy Functionals via Group Theory.

作者信息

Jeldtoft Jensen Henrik, Tempesta Piergiulio

机构信息

Centre for Complexity Science and Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.

Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Yokohama 226-8502, Japan.

出版信息

Entropy (Basel). 2018 Oct 19;20(10):804. doi: 10.3390/e20100804.

Abstract

The entropy of Boltzmann-Gibbs, as proved by Shannon and Khinchin, is based on four axioms, where the fourth one concerns additivity. The group theoretic entropies make use of formal group theory to replace this axiom with a more general composability axiom. As has been pointed out before, generalised entropies crucially depend on the number of allowed degrees of freedom . The functional form of group entropies is restricted (though not uniquely determined) by assuming extensivity on the equal probability ensemble, which leads to classes of functionals corresponding to sub-exponential, exponential or super-exponential dependence of the phase space volume on . We review the ensuing entropies, discuss the composability axiom and explain why group entropies may be particularly relevant from an information-theoretical perspective.

摘要

如香农(Shannon)和欣钦(Khinchin)所证明的,玻尔兹曼 - 吉布斯(Boltzmann - Gibbs)熵基于四个公理,其中第四个公理涉及可加性。群论熵利用形式群论将此公理替换为一个更一般的可组合性公理。如前所述,广义熵关键取决于允许的自由度数量。通过假设在等概率系综上具有广延性,群熵的函数形式受到限制(尽管不是唯一确定的),这导致了与相空间体积对……的亚指数、指数或超指数依赖相对应的泛函类。我们回顾由此产生的熵,讨论可组合性公理,并解释为什么从信息论的角度来看群熵可能特别相关。

相似文献

1
Group Entropies: From Phase Space Geometry to Entropy Functionals via Group Theory.
Entropy (Basel). 2018 Oct 19;20(10):804. doi: 10.3390/e20100804.
2
Formal groups and -entropies.
Proc Math Phys Eng Sci. 2016 Nov;472(2195):20160143. doi: 10.1098/rspa.2016.0143.
3
Generalized entropies and logarithms and their duality relations.
Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19151-4. doi: 10.1073/pnas.1216885109. Epub 2012 Nov 5.
4
A Brief Review of Generalized Entropies.
Entropy (Basel). 2018 Oct 23;20(11):813. doi: 10.3390/e20110813.
5
Equivalence of information production and generalised entropies in complex processes.
PLoS One. 2023 Sep 6;18(9):e0290695. doi: 10.1371/journal.pone.0290695. eCollection 2023.
6
Information Geometric Duality of -Deformed Exponential Families.
Entropy (Basel). 2019 Jan 24;21(2):112. doi: 10.3390/e21020112.
7
Group Structure as a Foundation for Entropies.
Entropy (Basel). 2024 Mar 18;26(3):266. doi: 10.3390/e26030266.
8
Generalized information entropies depending only on the probability distribution.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Dec;88(6):062146. doi: 10.1103/PhysRevE.88.062146. Epub 2013 Dec 27.
9
Group entropies, correlation laws, and zeta functions.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Aug;84(2 Pt 1):021121. doi: 10.1103/PhysRevE.84.021121. Epub 2011 Aug 10.
10
Groups, information theory, and Einstein's likelihood principle.
Phys Rev E. 2016 Apr;93:040101. doi: 10.1103/PhysRevE.93.040101. Epub 2016 Apr 6.

引用本文的文献

1
Group Structure as a Foundation for Entropies.
Entropy (Basel). 2024 Mar 18;26(3):266. doi: 10.3390/e26030266.
2
The Typical Set and Entropy in Stochastic Systems with Arbitrary Phase Space Growth.
Entropy (Basel). 2023 Feb 14;25(2):350. doi: 10.3390/e25020350.
3
Non-Additive Entropy Composition Rules Connected with Finite Heat-Bath Effects.
Entropy (Basel). 2022 Dec 3;24(12):1769. doi: 10.3390/e24121769.
4
Weighted Relative Group Entropies and Associated Fisher Metrics.
Entropy (Basel). 2022 Jan 13;24(1):120. doi: 10.3390/e24010120.
5
Beyond Boltzmann-Gibbs-Shannon in Physics and Elsewhere.
Entropy (Basel). 2019 Jul 15;21(7):696. doi: 10.3390/e21070696.
6
Nonadditive Entropies and Complex Systems.
Entropy (Basel). 2019 May 27;21(5):538. doi: 10.3390/e21050538.
7
Generalized entropies, density of states, and non-extensivity.
Sci Rep. 2020 Sep 23;10(1):15516. doi: 10.1038/s41598-020-72422-8.
8
Universality Classes and Information-Theoretic Measures of Complexity via Group Entropies.
Sci Rep. 2020 Apr 6;10(1):5952. doi: 10.1038/s41598-020-60188-y.
9
A new class of entropic information measures, formal group theory and information geometry.
Proc Math Phys Eng Sci. 2019 Feb;475(2222):20180633. doi: 10.1098/rspa.2018.0633. Epub 2019 Feb 6.

本文引用的文献

1
Universality Classes and Information-Theoretic Measures of Complexity via Group Entropies.
Sci Rep. 2020 Apr 6;10(1):5952. doi: 10.1038/s41598-020-60188-y.
2
A new class of entropic information measures, formal group theory and information geometry.
Proc Math Phys Eng Sci. 2019 Feb;475(2222):20180633. doi: 10.1098/rspa.2018.0633. Epub 2019 Feb 6.
3
Formal groups and -entropies.
Proc Math Phys Eng Sci. 2016 Nov;472(2195):20160143. doi: 10.1098/rspa.2016.0143.
4
Groups, information theory, and Einstein's likelihood principle.
Phys Rev E. 2016 Apr;93:040101. doi: 10.1103/PhysRevE.93.040101. Epub 2016 Apr 6.
5
Group entropies, correlation laws, and zeta functions.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Aug;84(2 Pt 1):021121. doi: 10.1103/PhysRevE.84.021121. Epub 2011 Aug 10.
6
Integrated information in discrete dynamical systems: motivation and theoretical framework.
PLoS Comput Biol. 2008 Jun 13;4(6):e1000091. doi: 10.1371/journal.pcbi.1000091.
7
Asymptotically scale-invariant occupancy of phase space makes the entropy Sq extensive.
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15377-82. doi: 10.1073/pnas.0503807102. Epub 2005 Oct 17.
8
Information measures for conscious experience.
Arch Ital Biol. 2001 Sep;139(4):367-71.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验