Jeldtoft Jensen Henrik, Tempesta Piergiulio
Centre for Complexity Science and Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Yokohama 226-8502, Japan.
Entropy (Basel). 2018 Oct 19;20(10):804. doi: 10.3390/e20100804.
The entropy of Boltzmann-Gibbs, as proved by Shannon and Khinchin, is based on four axioms, where the fourth one concerns additivity. The group theoretic entropies make use of formal group theory to replace this axiom with a more general composability axiom. As has been pointed out before, generalised entropies crucially depend on the number of allowed degrees of freedom . The functional form of group entropies is restricted (though not uniquely determined) by assuming extensivity on the equal probability ensemble, which leads to classes of functionals corresponding to sub-exponential, exponential or super-exponential dependence of the phase space volume on . We review the ensuing entropies, discuss the composability axiom and explain why group entropies may be particularly relevant from an information-theoretical perspective.
如香农(Shannon)和欣钦(Khinchin)所证明的,玻尔兹曼 - 吉布斯(Boltzmann - Gibbs)熵基于四个公理,其中第四个公理涉及可加性。群论熵利用形式群论将此公理替换为一个更一般的可组合性公理。如前所述,广义熵关键取决于允许的自由度数量。通过假设在等概率系综上具有广延性,群熵的函数形式受到限制(尽管不是唯一确定的),这导致了与相空间体积对……的亚指数、指数或超指数依赖相对应的泛函类。我们回顾由此产生的熵,讨论可组合性公理,并解释为什么从信息论的角度来看群熵可能特别相关。