Suppr超能文献

群熵:从相空间几何经由群论到熵泛函

Group Entropies: From Phase Space Geometry to Entropy Functionals via Group Theory.

作者信息

Jeldtoft Jensen Henrik, Tempesta Piergiulio

机构信息

Centre for Complexity Science and Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.

Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Yokohama 226-8502, Japan.

出版信息

Entropy (Basel). 2018 Oct 19;20(10):804. doi: 10.3390/e20100804.

Abstract

The entropy of Boltzmann-Gibbs, as proved by Shannon and Khinchin, is based on four axioms, where the fourth one concerns additivity. The group theoretic entropies make use of formal group theory to replace this axiom with a more general composability axiom. As has been pointed out before, generalised entropies crucially depend on the number of allowed degrees of freedom . The functional form of group entropies is restricted (though not uniquely determined) by assuming extensivity on the equal probability ensemble, which leads to classes of functionals corresponding to sub-exponential, exponential or super-exponential dependence of the phase space volume on . We review the ensuing entropies, discuss the composability axiom and explain why group entropies may be particularly relevant from an information-theoretical perspective.

摘要

如香农(Shannon)和欣钦(Khinchin)所证明的,玻尔兹曼 - 吉布斯(Boltzmann - Gibbs)熵基于四个公理,其中第四个公理涉及可加性。群论熵利用形式群论将此公理替换为一个更一般的可组合性公理。如前所述,广义熵关键取决于允许的自由度数量。通过假设在等概率系综上具有广延性,群熵的函数形式受到限制(尽管不是唯一确定的),这导致了与相空间体积对……的亚指数、指数或超指数依赖相对应的泛函类。我们回顾由此产生的熵,讨论可组合性公理,并解释为什么从信息论的角度来看群熵可能特别相关。

相似文献

2
Formal groups and -entropies.形式群与 - 熵
Proc Math Phys Eng Sci. 2016 Nov;472(2195):20160143. doi: 10.1098/rspa.2016.0143.
3
Generalized entropies and logarithms and their duality relations.广义熵和对数及其对偶关系。
Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19151-4. doi: 10.1073/pnas.1216885109. Epub 2012 Nov 5.
4
A Brief Review of Generalized Entropies.广义熵简述
Entropy (Basel). 2018 Oct 23;20(11):813. doi: 10.3390/e20110813.
7
Group Structure as a Foundation for Entropies.作为熵基础的群结构。
Entropy (Basel). 2024 Mar 18;26(3):266. doi: 10.3390/e26030266.
8
Generalized information entropies depending only on the probability distribution.仅依赖于概率分布的广义信息熵。
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Dec;88(6):062146. doi: 10.1103/PhysRevE.88.062146. Epub 2013 Dec 27.
9
Group entropies, correlation laws, and zeta functions.群熵、相关定律和黎曼ζ函数。
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Aug;84(2 Pt 1):021121. doi: 10.1103/PhysRevE.84.021121. Epub 2011 Aug 10.
10
Groups, information theory, and Einstein's likelihood principle.群体、信息理论和爱因斯坦的似然原理。
Phys Rev E. 2016 Apr;93:040101. doi: 10.1103/PhysRevE.93.040101. Epub 2016 Apr 6.

引用本文的文献

1
Group Structure as a Foundation for Entropies.作为熵基础的群结构。
Entropy (Basel). 2024 Mar 18;26(3):266. doi: 10.3390/e26030266.
6
Nonadditive Entropies and Complex Systems.非加性熵与复杂系统。
Entropy (Basel). 2019 May 27;21(5):538. doi: 10.3390/e21050538.

本文引用的文献

3
Formal groups and -entropies.形式群与 - 熵
Proc Math Phys Eng Sci. 2016 Nov;472(2195):20160143. doi: 10.1098/rspa.2016.0143.
4
Groups, information theory, and Einstein's likelihood principle.群体、信息理论和爱因斯坦的似然原理。
Phys Rev E. 2016 Apr;93:040101. doi: 10.1103/PhysRevE.93.040101. Epub 2016 Apr 6.
5
Group entropies, correlation laws, and zeta functions.群熵、相关定律和黎曼ζ函数。
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Aug;84(2 Pt 1):021121. doi: 10.1103/PhysRevE.84.021121. Epub 2011 Aug 10.
7
Asymptotically scale-invariant occupancy of phase space makes the entropy Sq extensive.相空间的渐近尺度不变占据使熵Sq具有广延性。
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15377-82. doi: 10.1073/pnas.0503807102. Epub 2005 Oct 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验