Computational Molecular Biology, FB Mathematik und Informatik, Freie Universität Berlin , Berlin 14195, Germany.
J Am Chem Soc. 2017 Jan 11;139(1):200-210. doi: 10.1021/jacs.6b09460. Epub 2016 Dec 27.
Long-lived conformational states and their interconversion rates critically determine protein function and regulation. When these states have distinct chemical shifts, the measurement of relaxation by NMR may provide us with useful information about their structure, kinetics, and thermodynamics at atomic resolution. However, as these experimental data are sensitive to many structural and dynamic effects, their interpretation with phenomenological models is challenging, even if only a few metastable states are involved. Consequently, approximations and simplifications must often be used which increase the risk of missing important microscopic features hidden in the data. Here, we show how molecular dynamics simulations analyzed through Markov state models and the related hidden Markov state models may be used to establish mechanistic models that provide a microscopic interpretation of NMR relaxation data. Using ubiquitin and BPTI as examples, we demonstrate how the approach allows us to dissect experimental data into a number of dynamic processes between metastable states. Such a microscopic view may greatly facilitate the mechanistic interpretation of experimental data and serve as a next-generation method for the validation of molecular mechanics force fields and chemical shift prediction algorithms.
长寿命构象态及其转换速率对蛋白质功能和调控具有决定性作用。当这些构象态具有不同的化学位移时,通过 NMR 测量弛豫可以为我们提供关于其结构、动力学和热力学的原子分辨率的有用信息。然而,由于这些实验数据对许多结构和动力学效应敏感,即使只涉及少数亚稳态,用唯象模型进行解释也是具有挑战性的。因此,通常必须使用近似和简化,这增加了错过隐藏在数据中的重要微观特征的风险。在这里,我们展示了如何通过分子动力学模拟进行分析,利用马科夫状态模型和相关的隐马科夫状态模型,建立可以提供 NMR 弛豫数据微观解释的机械模型。以泛素和 BPTI 为例,我们展示了该方法如何将实验数据分解为亚稳态之间的多个动态过程。这种微观视角可以极大地促进对实验数据的机械解释,并作为下一代方法来验证分子力学力场和化学位移预测算法。