The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University , Atlanta, Georgia 30332, United States.
Department of Materials Science and Engineering, National Tsing Hua University , Hsinchu, 30013, Taiwan.
Nano Lett. 2017 Jan 11;17(1):334-340. doi: 10.1021/acs.nanolett.6b04151. Epub 2016 Dec 16.
Despite the pivotal role played by the reduction of a salt precursor in the synthesis of metal nanocrystals, it is still unclear how the precursor is reduced. The precursor can be reduced to an atom in the solution phase, followed by its deposition onto the surface of a growing nanocrystal. Alternatively, the precursor can adsorb onto the surface of a growing nanocrystal, followed by reduction through an autocatalytic process. With Pd as an example, here we demonstrate that the pathway has a correlation with the reduction kinetics involved. Our quantitative analyses of the reduction kinetics of PdCl and PdBr by ascorbic acid at room temperature in the absence and presence of Pd nanocubes, respectively, suggest that PdCl was reduced in the solution phase while PdBr was reduced on the surface of a growing nanocrystal. Our results also demonstrate that the reduction pathway of PdBr by ascorbic acid could be switched from surface to solution by raising the reaction temperature.
尽管减少盐前体在金属纳米晶体合成中起着关键作用,但前体是如何被还原的仍不清楚。前体可以在溶液相中还原为原子,然后沉积在生长的纳米晶体表面上。或者,前体可以吸附在生长的纳米晶体表面上,然后通过自催化过程还原。以 Pd 为例,在这里我们证明了该途径与所涉及的还原动力学有关。我们对在室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室温和室