Sivak David A, Crooks Gavin E
Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
Molecular Biophysics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA and Kavli Energy NanoSciences Institute at Berkeley, California 94720, USA.
Phys Rev E. 2016 Nov;94(5-1):052106. doi: 10.1103/PhysRevE.94.052106. Epub 2016 Nov 3.
We explore the thermodynamic geometry of a simple system that models the bistable dynamics of nucleic acid hairpins in single molecule force-extension experiments. Near equilibrium, optimal (minimum-dissipation) driving protocols are governed by a generalized linear response friction coefficient. Our analysis demonstrates that the friction coefficient of the driving protocols is sharply peaked at the interface between metastable regions, which leads to minimum-dissipation protocols that drive rapidly within a metastable basin, but then linger longest at the interface, giving thermal fluctuations maximal time to kick the system over the barrier. Intuitively, the same principle applies generically in free energy estimation (both in steered molecular dynamics simulations and in single-molecule experiments), provides a design principle for the construction of thermodynamically efficient coupling between stochastic objects, and makes a prediction regarding the construction of evolved biomolecular motors.
我们探索了一个简单系统的热力学几何结构,该系统模拟了单分子力-伸长实验中核酸发夹的双稳态动力学。在接近平衡时,最优(最小耗散)驱动协议由广义线性响应摩擦系数控制。我们的分析表明,驱动协议的摩擦系数在亚稳区域之间的界面处急剧峰值,这导致了最小耗散协议,即在亚稳盆地内快速驱动,但随后在界面处停留最长时间,使热涨落有最大时间将系统越过势垒。直观地说,相同的原理普遍适用于自由能估计(在引导分子动力学模拟和单分子实验中),为随机对象之间构建热力学高效耦合提供了设计原则,并对进化生物分子马达的构建做出了预测。