Suppr超能文献

同步力与荧光测量揭示了结构化mRNA对翻译调控的核糖体变速机制。

Co-temporal Force and Fluorescence Measurements Reveal a Ribosomal Gear Shift Mechanism of Translation Regulation by Structured mRNAs.

作者信息

Desai Varsha P, Frank Filipp, Lee Antony, Righini Maurizio, Lancaster Laura, Noller Harry F, Tinoco Ignacio, Bustamante Carlos

机构信息

Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, Berkeley, CA 94720, USA.

Jason L. Choy Laboratory of Single-Molecule Biophysics, University of California, Berkeley, Berkeley, CA 94720, USA.

出版信息

Mol Cell. 2019 Sep 5;75(5):1007-1019.e5. doi: 10.1016/j.molcel.2019.07.024. Epub 2019 Aug 27.

Abstract

The movement of ribosomes on mRNA is often interrupted by secondary structures that present mechanical barriers and play a central role in translation regulation. We investigate how ribosomes couple their internal conformational changes with the activity of translocation factor EF-G to unwind mRNA secondary structures using high-resolution optical tweezers with single-molecule fluorescence capability. We find that hairpin opening occurs during EF-G-catalyzed translocation and is driven by the forward rotation of the small subunit head. Modulating the magnitude of the hairpin barrier by force shows that ribosomes respond to strong barriers by shifting their operation to an alternative 7-fold-slower kinetic pathway prior to translocation. Shifting into a slow gear results from an allosteric switch in the ribosome that may allow it to exploit thermal fluctuations to overcome mechanical barriers. Finally, we observe that ribosomes occasionally open the hairpin in two successive sub-codon steps, revealing a previously unobserved translocation intermediate.

摘要

核糖体在信使核糖核酸(mRNA)上的移动常常会被二级结构打断,这些二级结构构成了机械屏障,并在翻译调控中发挥核心作用。我们使用具有单分子荧光能力的高分辨率光镊,研究核糖体如何将其内部构象变化与转位因子EF-G的活性相结合,以解开mRNA二级结构。我们发现,发夹结构的打开发生在EF-G催化的转位过程中,并且由小亚基头部的向前旋转驱动。通过施加力来调节发夹结构的屏障强度,结果表明核糖体在转位之前会通过将其运作转移到另一条速度慢7倍的动力学途径来应对强大的屏障。进入慢速模式是核糖体中一种变构转换的结果,这种变构转换可能使核糖体利用热涨落来克服机械屏障。最后,我们观察到核糖体偶尔会以两个连续的亚密码子步骤打开发夹结构,揭示了一种以前未被观察到的转位中间体。

相似文献

5
Spontaneous ribosomal translocation of mRNA and tRNAs into a chimeric hybrid state.mRNA 和 tRNA 自发的核糖体易位进入嵌合杂交状态。
Proc Natl Acad Sci U S A. 2019 Apr 16;116(16):7813-7818. doi: 10.1073/pnas.1901310116. Epub 2019 Apr 1.

引用本文的文献

4
On the response of elongating ribosomes to forces opposing translocation.在抗移位力下延伸核糖体的反应。
Biophys J. 2024 Sep 17;123(18):3010-3023. doi: 10.1016/j.bpj.2024.05.032. Epub 2024 Jun 6.

本文引用的文献

3
The ribosome moves: RNA mechanics and translocation.核糖体移动:RNA机制与转位。
Nat Struct Mol Biol. 2017 Dec 7;24(12):1021-1027. doi: 10.1038/nsmb.3505.
6
Thermodynamic geometry of minimum-dissipation driven barrier crossing.最小耗散驱动势垒穿越的热力学几何
Phys Rev E. 2016 Nov;94(5-1):052106. doi: 10.1103/PhysRevE.94.052106. Epub 2016 Nov 3.
8
Kinetics of Spontaneous and EF-G-Accelerated Rotation of Ribosomal Subunits.核糖体亚基自发及EF-G加速旋转的动力学
Cell Rep. 2016 Aug 23;16(8):2187-2196. doi: 10.1016/j.celrep.2016.07.051. Epub 2016 Aug 11.
9
Elongation factor G initiates translocation through a power stroke.延伸因子G通过动力冲程启动转位。
Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):7515-20. doi: 10.1073/pnas.1602668113. Epub 2016 Jun 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验