Suppr超能文献

通过希尔伯特-黄变换研究麻醉脑电图固有成分的功率密度和非线性程度:以氯胺酮和阿芬太尼为例

Investigating Power Density and the Degree of Nonlinearity in Intrinsic Components of Anesthesia EEG by the Hilbert-Huang Transform: An Example Using Ketamine and Alfentanil.

作者信息

Tsai Feng-Fang, Fan Shou-Zen, Lin Yi-Shiuan, Huang Norden E, Yeh Jia-Rong

机构信息

Department of Anesthesiology, National Taiwan University Hospital, Taipei, Taiwan.

Department of Anesthesiology, College of Medicine, National Taiwan University, Taipei, Taiwan.

出版信息

PLoS One. 2016 Dec 14;11(12):e0168108. doi: 10.1371/journal.pone.0168108. eCollection 2016.

Abstract

Empirical mode decomposition (EMD) is an adaptive filter bank for processing nonlinear and non-stationary signals, such as electroencephalographic (EEG) signals. EMD works well to decompose a time series into a set of intrinsic mode functions with specific frequency bands. An IMF therefore represents an intrinsic component on its correspondingly intrinsic frequency band. The word of 'intrinsic' means the frequency is totally adaptive to the nature of a signal. In this study, power density and nonlinearity are two critical parameters for characterizing the amplitude and frequency modulations in IMFs. In this study, a nonlinearity level is quantified using degree of waveform distortion (DWD), which represents the characteristic of waveform distortion as an assessment of the intra-wave modulation of an IMF. In the application of anesthesia EEG analysis, the assessments of power density and DWD for a set of IMFs represent dynamic responses in EEG caused by two different anesthesia agents, Ketamine and Alfentanil, on different frequency bands. Ketamine causes the increase of power density and the decrease of nonlinearity on γ-band neuronal oscillation, which cannot be found EEG responses of group B using Alfentanil. Both agents cause an increase of power density and a decrease of nonlinearity on β-band neuronal oscillation accompany with a loss of consciousness. Moreover, anesthesia agents cause the decreases of power density and nonlinearity (i.e. DWD) for the low-frequency IMFs.

摘要

经验模态分解(EMD)是一种用于处理非线性和非平稳信号(如脑电图(EEG)信号)的自适应滤波器组。EMD能够很好地将时间序列分解为一组具有特定频带的本征模态函数。因此,一个本征模态函数(IMF)在其相应的本征频带上代表一个本征分量。“本征”一词意味着频率完全适应信号的特性。在本研究中,功率密度和非线性是表征IMF中幅度和频率调制的两个关键参数。在本研究中,使用波形失真度(DWD)来量化非线性水平,DWD表示波形失真的特征,作为对IMF内波调制的一种评估。在麻醉脑电图分析的应用中,对一组IMF的功率密度和DWD的评估代表了由两种不同麻醉剂氯胺酮和阿芬太尼在不同频带上引起的脑电图动态反应。氯胺酮导致γ波段神经元振荡的功率密度增加和非线性降低,而使用阿芬太尼的B组未发现这种脑电图反应。两种药物都会导致β波段神经元振荡的功率密度增加和非线性降低,并伴有意识丧失。此外,麻醉剂会导致低频IMF的功率密度和非线性(即DWD)降低。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验