Rao Shangbang, Ibrahim Joseph G, Cheng Jian, Yap Pew-Thian, Zhu Hongtu
Department of Biostatistics and Biomedical Research Imaging Center University of North Carolina at Chapel Hill Chapel Hill, NC 27599, USA.
J Comput Graph Stat. 2016;25(4):1195-1211. doi: 10.1080/10618600.2015.1105750. Epub 2015 Nov 11.
High angular resolution diffusion imaging (HARDI) has recently been of great interest in mapping the orientation of intra-voxel crossing fibers, and such orientation information allows one to infer the connectivity patterns prevalent among different brain regions and possible changes in such connectivity over time for various neurodegenerative and neuropsychiatric diseases. The aim of this paper is to propose a penalized multi-scale adaptive regression model (PMARM) framework to spatially and adaptively infer the orientation distribution function (ODF) of water diffusion in regions with complex fiber configurations. In PMARM, we reformulate the HARDI imaging reconstruction as a weighted regularized least-squares regression (WRLSR) problem. Similarity and distance weights are introduced to account for spatial smoothness of HARDI, while preserving the unknown discontinuities (e.g., edges between white matter and grey matter) of HARDI. The penalty function is introduced to ensure the sparse solutions of ODFs, while a scaled weighted estimator is calculated to correct the bias introduced by the penalty at each voxel. In PMARM, we integrate the multiscale adaptive regression models (Li et al., 2011), the propagation-separation method (Polzehl and Spokoiny, 2000), and Lasso (least absolute shrinkage and selection operator) (Tibshirani, 1996) to adaptively estimate ODFs across voxels. Experimental results indicate that PMARM can reduce the angle detection errors on fiber crossing area and provide more accurate reconstruction than standard voxel-wise methods.
高角分辨率扩散成像(HARDI)最近在描绘体素内交叉纤维的方向方面引起了极大关注,这种方向信息使人们能够推断不同脑区之间普遍存在的连接模式,以及各种神经退行性和神经精神疾病中这种连接随时间可能发生的变化。本文的目的是提出一种惩罚多尺度自适应回归模型(PMARM)框架,以在空间上自适应地推断具有复杂纤维结构区域中水扩散的方向分布函数(ODF)。在PMARM中,我们将HARDI成像重建重新表述为加权正则化最小二乘回归(WRLSR)问题。引入相似性和距离权重以考虑HARDI的空间平滑性,同时保留HARDI未知的不连续性(例如白质和灰质之间的边缘)。引入惩罚函数以确保ODF的稀疏解,同时计算缩放加权估计器以校正每个体素处惩罚引入的偏差。在PMARM中,我们整合了多尺度自适应回归模型(Li等人,2011)、传播分离方法(Polzehl和Spokoiny,2000)以及套索(最小绝对收缩和选择算子)(Tibshirani,1996),以跨体素自适应地估计ODF。实验结果表明,PMARM可以减少纤维交叉区域的角度检测误差,并比标准的逐体素方法提供更准确的重建。