Suppr超能文献

SR-HARDI:空间正则化高角分辨率扩散成像

SR-HARDI: Spatially Regularizing High Angular Resolution Diffusion Imaging.

作者信息

Rao Shangbang, Ibrahim Joseph G, Cheng Jian, Yap Pew-Thian, Zhu Hongtu

机构信息

Department of Biostatistics and Biomedical Research Imaging Center University of North Carolina at Chapel Hill Chapel Hill, NC 27599, USA.

出版信息

J Comput Graph Stat. 2016;25(4):1195-1211. doi: 10.1080/10618600.2015.1105750. Epub 2015 Nov 11.

Abstract

High angular resolution diffusion imaging (HARDI) has recently been of great interest in mapping the orientation of intra-voxel crossing fibers, and such orientation information allows one to infer the connectivity patterns prevalent among different brain regions and possible changes in such connectivity over time for various neurodegenerative and neuropsychiatric diseases. The aim of this paper is to propose a penalized multi-scale adaptive regression model (PMARM) framework to spatially and adaptively infer the orientation distribution function (ODF) of water diffusion in regions with complex fiber configurations. In PMARM, we reformulate the HARDI imaging reconstruction as a weighted regularized least-squares regression (WRLSR) problem. Similarity and distance weights are introduced to account for spatial smoothness of HARDI, while preserving the unknown discontinuities (e.g., edges between white matter and grey matter) of HARDI. The penalty function is introduced to ensure the sparse solutions of ODFs, while a scaled weighted estimator is calculated to correct the bias introduced by the penalty at each voxel. In PMARM, we integrate the multiscale adaptive regression models (Li et al., 2011), the propagation-separation method (Polzehl and Spokoiny, 2000), and Lasso (least absolute shrinkage and selection operator) (Tibshirani, 1996) to adaptively estimate ODFs across voxels. Experimental results indicate that PMARM can reduce the angle detection errors on fiber crossing area and provide more accurate reconstruction than standard voxel-wise methods.

摘要

高角分辨率扩散成像(HARDI)最近在描绘体素内交叉纤维的方向方面引起了极大关注,这种方向信息使人们能够推断不同脑区之间普遍存在的连接模式,以及各种神经退行性和神经精神疾病中这种连接随时间可能发生的变化。本文的目的是提出一种惩罚多尺度自适应回归模型(PMARM)框架,以在空间上自适应地推断具有复杂纤维结构区域中水扩散的方向分布函数(ODF)。在PMARM中,我们将HARDI成像重建重新表述为加权正则化最小二乘回归(WRLSR)问题。引入相似性和距离权重以考虑HARDI的空间平滑性,同时保留HARDI未知的不连续性(例如白质和灰质之间的边缘)。引入惩罚函数以确保ODF的稀疏解,同时计算缩放加权估计器以校正每个体素处惩罚引入的偏差。在PMARM中,我们整合了多尺度自适应回归模型(Li等人,2011)、传播分离方法(Polzehl和Spokoiny,2000)以及套索(最小绝对收缩和选择算子)(Tibshirani,1996),以跨体素自适应地估计ODF。实验结果表明,PMARM可以减少纤维交叉区域的角度检测误差,并比标准的逐体素方法提供更准确的重建。

相似文献

1
SR-HARDI: Spatially Regularizing High Angular Resolution Diffusion Imaging.
J Comput Graph Stat. 2016;25(4):1195-1211. doi: 10.1080/10618600.2015.1105750. Epub 2015 Nov 11.
2
Spatial HARDI: improved visualization of complex white matter architecture with Bayesian spatial regularization.
Neuroimage. 2011 Jan 1;54(1):396-409. doi: 10.1016/j.neuroimage.2010.07.040. Epub 2010 Jul 27.
4
Nonnegative definite EAP and ODF estimation via a unified multi-shell HARDI reconstruction.
Med Image Comput Comput Assist Interv. 2012;15(Pt 2):313-21. doi: 10.1007/978-3-642-33418-4_39.
5
Histological validation of diffusion MRI fiber orientation distributions and dispersion.
Neuroimage. 2018 Jan 15;165:200-221. doi: 10.1016/j.neuroimage.2017.10.046. Epub 2017 Oct 23.
6
How does B-value affect HARDI reconstruction using clinical diffusion MRI data?
PLoS One. 2015 Mar 24;10(3):e0120773. doi: 10.1371/journal.pone.0120773. eCollection 2015.
7
A polynomial approach for maxima extraction and its application to tractography in HARDI.
Inf Process Med Imaging. 2011;22:723-34. doi: 10.1007/978-3-642-22092-0_59.
8
Estimation of individual axon bundle properties by a Multi-Resolution Discrete-Search method.
Med Image Anal. 2017 Dec;42:26-43. doi: 10.1016/j.media.2017.06.008. Epub 2017 Jun 29.
9
Simultaneous ODF estimation and tractography in HARDI.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:86-9. doi: 10.1109/EMBC.2012.6345877.
10
SPHERE: SPherical Harmonic Elastic REgistration of HARDI data.
Neuroimage. 2011 Mar 15;55(2):545-56. doi: 10.1016/j.neuroimage.2010.12.015. Epub 2010 Dec 13.

引用本文的文献

1
ESTIMATING FIBER ORIENTATION DISTRIBUTION WITH APPLICATION TO STUDY BRAIN LATERALIZATION USING HCP D-MRI DATA.
Ann Appl Stat. 2024 Mar;18(1):100-124. doi: 10.1214/23-aoas1781. Epub 2024 Jan 31.

本文引用的文献

1
Local Tests for Identifying Anisotropic Diffusion Areas in Human Brain with DTI.
Ann Appl Stat. 2013 Mar;7(1):201-225. doi: 10.1214/12-aoas573.
2
Adaptive smoothing of multi-shell diffusion weighted magnetic resonance data by msPOAS.
Neuroimage. 2014 Jul 15;95:90-105. doi: 10.1016/j.neuroimage.2014.03.053. Epub 2014 Mar 25.
3
A robust variational approach for simultaneous smoothing and estimation of DTI.
Neuroimage. 2013 Feb 15;67:33-41. doi: 10.1016/j.neuroimage.2012.11.012. Epub 2012 Nov 17.
4
Position-orientation adaptive smoothing of diffusion weighted magnetic resonance data (POAS).
Med Image Anal. 2012 Aug;16(6):1142-55. doi: 10.1016/j.media.2012.05.007. Epub 2012 May 24.
5
Multiscale Adaptive Regression Models for Neuroimaging Data.
J R Stat Soc Series B Stat Methodol. 2011 Sep;73(4):559-578. doi: 10.1111/j.1467-9868.2010.00767.x.
6
A nonparametric Riemannian framework for processing high angular resolution diffusion images and its applications to ODF-based morphometry.
Neuroimage. 2011 Jun 1;56(3):1181-201. doi: 10.1016/j.neuroimage.2011.01.053. Epub 2011 Feb 1.
8
Spatial HARDI: improved visualization of complex white matter architecture with Bayesian spatial regularization.
Neuroimage. 2011 Jan 1;54(1):396-409. doi: 10.1016/j.neuroimage.2010.07.040. Epub 2010 Jul 27.
9
Regression Models for Identifying Noise Sources in Magnetic Resonance Images.
J Am Stat Assoc. 2009 Jun 1;104(486):623-637. doi: 10.1198/jasa.2009.0029.
10
HARDI denoising: variational regularization of the spherical apparent diffusion coefficient sADC.
Inf Process Med Imaging. 2009;21:515-27. doi: 10.1007/978-3-642-02498-6_43.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验