Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Neuroimage. 2011 Mar 15;55(2):545-56. doi: 10.1016/j.neuroimage.2010.12.015. Epub 2010 Dec 13.
In contrast to the more common Diffusion Tensor Imaging (DTI), High Angular Resolution Diffusion Imaging (HARDI) allows superior delineation of angular microstructures of brain white matter, and makes possible multiple-fiber modeling of each voxel for better characterization of brain connectivity. However, the complex orientation information afforded by HARDI makes registration of HARDI images more complicated than scalar images. In particular, the question of how much orientation information is needed for satisfactory alignment has not been sufficiently addressed. Low order orientation representation is generally more robust than high order representation, although the latter provides more information for correct alignment of fiber pathways. However, high order representation, when naïvely utilized, might not necessarily be conducive to improving registration accuracy since similar structures with significant orientation differences prior to proper alignment might be mistakenly taken as non-matching structures. We present in this paper a HARDI registration algorithm, called SPherical Harmonic Elastic REgistration (SPHERE), which in a principled means hierarchically extracts orientation information from HARDI data for structural alignment. The image volumes are first registered using robust, relatively direction invariant features derived from the Orientation Distribution Function (ODF), and the alignment is then further refined using spherical harmonic (SH) representation with gradually increasing orders. This progression from non-directional, single-directional to multi-directional representation provides a systematic means of extracting directional information given by diffusion-weighted imaging. Coupled with a template-subject-consistent soft-correspondence-matching scheme, this approach allows robust and accurate alignment of HARDI data. Experimental results show marked increase in accuracy over a state-of-the-art DTI registration algorithm.
与更为常见的弥散张量成像(DTI)相比,高角分辨率弥散成像(HARDI)可以更好地区分脑白质的各向异性微观结构,并实现每个体素的多纤维建模,从而更好地描述脑连接。然而,HARDI 提供的复杂方向信息使得 HARDI 图像的配准比标量图像更为复杂。特别是,满足配准要求所需的方向信息量的问题尚未得到充分解决。低阶方向表示通常比高阶表示更稳健,尽管后者为纤维路径的正确对准提供了更多信息。然而,当高阶表示被简单地使用时,它不一定有助于提高配准精度,因为在正确对准之前,具有显著方向差异的相似结构可能会被错误地视为不匹配的结构。本文提出了一种 HARDI 配准算法,称为球谐弹性配准(SPHERE),它以一种从 HARDI 数据中分层提取结构对准的方向信息的原则性方法。首先使用从方向分布函数(ODF)中提取的稳健、相对方向不变的特征对图像体积进行配准,然后使用具有逐渐增加阶数的球谐(SH)表示进一步细化对齐。这种从无方向、单方向到多方向表示的渐进表示方法为扩散加权成像提供了一种系统的提取方向信息的方法。结合模板-主体一致的软对应匹配方案,这种方法可以实现 HARDI 数据的稳健和准确配准。实验结果表明,与最先进的 DTI 配准算法相比,该方法的准确性有了显著提高。