Department of Radiology, Weill Medical College of Cornell University, New York, NY 10044, USA.
Neuroimage. 2011 Jan 1;54(1):396-409. doi: 10.1016/j.neuroimage.2010.07.040. Epub 2010 Jul 27.
Imaging of water diffusion using magnetic resonance imaging has become an important noninvasive method for probing the white matter connectivity of the human brain for scientific and clinical studies. Current methods, such as diffusion tensor imaging (DTI), high angular resolution diffusion imaging (HARDI) such as q-ball imaging, and diffusion spectrum imaging (DSI), are limited by low spatial resolution, long scan times, and low signal-to-noise ratio (SNR). These methods fundamentally perform reconstruction on a voxel-by-voxel level, effectively discarding the natural coherence of the data at different points in space. This paper attempts to overcome these tradeoffs by using spatial information to constrain the reconstruction from raw diffusion MRI data, and thereby improve angular resolution and noise tolerance. Spatial constraints are specified in terms of a prior probability distribution, which is then incorporated in a Bayesian reconstruction formulation. By taking the log of the resulting posterior distribution, optimal Bayesian reconstruction is reduced to a cost minimization problem. The minimization is solved using a new iterative algorithm based on successive least squares quadratic descent. Simulation studies and in vivo results are presented which indicate significant gains in terms of higher angular resolution of diffusion orientation distribution functions, better separation of crossing fibers, and improved reconstruction SNR over the same HARDI method, spherical harmonic q-ball imaging, without spatial regularization. Preliminary data also indicate that the proposed method might be better at maintaining accurate ODFs for smaller numbers of diffusion-weighted acquisition directions (hence faster scans) compared to conventional methods. Possible impacts of this work include improved evaluation of white matter microstructural integrity in regions of crossing fibers and higher spatial and angular resolution for more accurate tractography.
使用磁共振成像进行水分子扩散成像已成为一种重要的非侵入性方法,可用于科学和临床研究中探测人类大脑白质的连通性。目前的方法,如扩散张量成像(DTI)、高角度分辨率扩散成像(HARDI),如 q 球成像,以及扩散谱成像(DSI),受到空间分辨率低、扫描时间长和信噪比(SNR)低的限制。这些方法从根本上在体素水平上进行重建,有效地丢弃了空间中不同点的数据自然相干性。本文试图通过使用空间信息来约束从原始扩散 MRI 数据的重建,从而提高角度分辨率和噪声容限,来克服这些权衡。空间约束以先验概率分布的形式指定,然后将其合并到贝叶斯重建公式中。通过对所得后验分布取对数,最优贝叶斯重建简化为成本最小化问题。最小化问题通过基于连续最小二乘二次下降的新迭代算法来解决。提出了一种新的迭代算法,基于连续最小二乘二次下降,进行了模拟研究和体内结果的展示,表明在相同的 HARDI 方法(球谐 q 球成像)的基础上,在扩散方向分布函数的角度分辨率更高、交叉纤维的分离更好、重建 SNR 更高方面取得了显著的收益,而无需空间正则化。初步数据还表明,与传统方法相比,该方法在较小的扩散加权采集方向(因此扫描速度更快)数量下,可能更能保持准确的 ODF。这项工作的可能影响包括改善对交叉纤维区域的白质微观结构完整性的评估,以及更高的空间和角度分辨率,以进行更准确的轨迹追踪。