National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India.
Nat Commun. 2016 Dec 15;7:13808. doi: 10.1038/ncomms13808.
Oscillatory synchrony among neurons occurs in many species and brain areas, and has been proposed to help neural circuits process information. One hypothesis states that oscillatory input creates cyclic integration windows: specific times in each oscillatory cycle when postsynaptic neurons become especially responsive to inputs. With paired local field potential (LFP) and intracellular recordings and controlled stimulus manipulations we directly test this idea in the locust olfactory system. We find that inputs arriving in Kenyon cells (KCs) sum most effectively in a preferred window of the oscillation cycle. With a computational model, we show that the non-uniform structure of noise in the membrane potential helps mediate this process. Further experiments performed in vivo demonstrate that integration windows can form in the absence of inhibition and at a broad range of oscillation frequencies. Our results reveal how a fundamental coincidence-detection mechanism in a neural circuit functions to decode temporally organized spiking.
神经元的振荡同步发生在许多物种和脑区,并且被认为有助于神经回路处理信息。一种假说认为,振荡输入会产生循环整合窗口:在每个振荡周期中,特定的时间点,突触后神经元对输入变得特别敏感。通过配对的局部场电位 (LFP) 和细胞内记录以及受控的刺激操作,我们在蝗虫嗅觉系统中直接测试了这个想法。我们发现,传入的感觉神经元 (KCs) 的输入在振荡周期的一个首选窗口中有效地总和。通过一个计算模型,我们表明膜电位中的非均匀噪声结构有助于介导这个过程。在体内进行的进一步实验表明,整合窗口可以在没有抑制的情况下形成,并且在广泛的振荡频率范围内形成。我们的结果揭示了神经回路中的基本巧合检测机制如何起作用以解码时间组织的尖峰。