Iyer Shama R, Shah Sameer B, Valencia Ana P, Schneider Martin F, Hernández-Ochoa Erick O, Stains Joseph P, Blemker Silvia S, Lovering Richard M
Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland.
Departments of Orthopaedic Surgery and Bioengineering, University of California San Diego, La Jolla, California.
J Appl Physiol (1985). 2017 Mar 1;122(3):470-481. doi: 10.1152/japplphysiol.00857.2016. Epub 2016 Dec 15.
Duchenne muscular dystrophy (DMD) is a genetic disorder in which the absence of dystrophin leads to progressive muscle degeneration and weakness. Although the genetic basis is known, the pathophysiology of dystrophic skeletal muscle remains unclear. We examined nuclear movement in wild-type (WT) and muscular dystrophy mouse model for DMD (MDX) (dystrophin-null) mouse myofibers. We also examined expression of proteins in the linkers of nucleoskeleton and cytoskeleton (LINC) complex, as well as nuclear transcriptional activity via histone H3 acetylation and polyadenylate-binding nuclear protein-1. Because movement of nuclei is not only LINC dependent but also microtubule dependent, we analyzed microtubule density and organization in WT and MDX myofibers, including the application of a unique 3D tool to assess microtubule core structure. Nuclei in MDX myofibers were more mobile than in WT myofibers for both distance traveled and velocity. MDX muscle shows reduced expression and labeling intensity of nesprin-1, a LINC protein that attaches the nucleus to the microtubule and actin cytoskeleton. MDX nuclei also showed altered transcriptional activity. Previous studies established that microtubule structure at the cortex is disrupted in MDX myofibers; our analyses extend these findings by showing that microtubule structure in the core is also disrupted. In addition, we studied malformed MDX myofibers to better understand the role of altered myofiber morphology vs. microtubule architecture in the underlying susceptibility to injury seen in dystrophic muscles. We incorporated morphological and microtubule architectural concepts into a simplified finite element mathematical model of myofiber mechanics, which suggests a greater contribution of myofiber morphology than microtubule structure to muscle biomechanical performance. Microtubules provide the means for nuclear movement but show altered organization in the muscular dystrophy mouse model (MDX) (dystrophin-null) muscle. Here, MDX myofibers show increased nuclear movement, altered transcriptional activity, and altered linkers of nucleoskeleton and cytoskeleton complex expression compared with healthy myofibers. Microtubule architecture was incorporated in finite element modeling of passive stretch, revealing a role of fiber malformation, commonly found in MDX muscle. The results suggest that alterations in microtubule architecture in MDX muscle affect nuclear movement, which is essential for muscle function.
杜兴氏肌肉营养不良症(DMD)是一种遗传性疾病,其中肌营养不良蛋白的缺失会导致进行性肌肉退化和无力。尽管其遗传基础已为人所知,但营养不良性骨骼肌的病理生理学仍不清楚。我们研究了野生型(WT)和DMD小鼠模型(MDX)(肌营养不良蛋白缺失)小鼠肌纤维中的核运动。我们还研究了核骨架与细胞骨架连接复合体(LINC复合体)中蛋白质的表达,以及通过组蛋白H3乙酰化和聚腺苷酸结合核蛋白-1的核转录活性。由于核运动不仅依赖于LINC,还依赖于微管,我们分析了WT和MDX肌纤维中的微管密度和组织,包括应用一种独特的三维工具来评估微管核心结构。MDX肌纤维中的核在移动距离和速度方面都比WT肌纤维中的核更具移动性。MDX肌肉中nesprin-1(一种将核与微管和肌动蛋白细胞骨架连接起来的LINC蛋白)的表达和标记强度降低。MDX核也表现出转录活性改变。先前的研究表明,MDX肌纤维中皮质的微管结构被破坏;我们的分析扩展了这些发现,表明核心中的微管结构也被破坏。此外,我们研究了畸形的MDX肌纤维,以更好地理解肌纤维形态改变与微管结构在营养不良性肌肉中潜在的易损伤性中的作用。我们将形态学和微管结构概念纳入肌纤维力学的简化有限元数学模型,这表明肌纤维形态对肌肉生物力学性能的贡献比微管结构更大。微管为核运动提供了手段,但在肌肉营养不良小鼠模型(MDX)(肌营养不良蛋白缺失)肌肉中显示出组织结构改变。在这里,与健康肌纤维相比,MDX肌纤维显示出核运动增加、转录活性改变以及核骨架与细胞骨架复合体连接蛋白表达改变。微管结构被纳入被动拉伸的有限元建模中,揭示了MDX肌肉中常见的纤维畸形的作用。结果表明,MDX肌肉中微管结构的改变会影响核运动,而核运动对肌肉功能至关重要。