Lee Jihye, Park Jiyun, Lee Jun-Young, Yeo Jong-Souk
School of Integrated Technology Yonsei University Incheon 406-840 South Korea; Yonsei Institute of Convergence Technology Yonsei University Incheon 406-840 South Korea.
Adv Sci (Weinh). 2015 Jun 24;2(9):1500121. doi: 10.1002/advs.201500121. eCollection 2015 Sep.
For a nanoplasmonic approach of wearable biochip platform, understanding correlation between near-field enhancement on nanostructures and sensing capability is a crucial step to improve the sensitivity in biosensing. A novel and effective method is demonstrated to increase sensitivity with the enhanced electric fields and to reduce noise with targeted functionalization enabled by transferring side edge prefunctionalized (SEPF) nanostructure arrays onto flexible substrates. Nanostructure sidewalls have selective biochemically functional terminals for the hybridization of microRNAs (miRNAs) and the immobilization of resonant nanoparticles, thus forming hetero assemblies of the nanostructure and the nanoparticles. The unique configuration has shown ultrasensitive biosensing of miRNA-21 in a 10 × 10 m level by a red-shift in scattering spectra induced by a plasmon coupling. This ultrasensitive SEPF nanostructure arrays are fabricated on a flexible substrate using a contact transfer printing with a release layer of trichloro(1H, 1H, 2H, 2H-perfluorooctyl)silane. The introduction of the release layer at a prefunctionalizing step has proven to provide selective functionalization only on the sidewalls of the nanostructures. This reduces a background noise caused by the scattering from nonspecifically bound nanoparticles on the substrate, thus enabling reliable and precise detection.
对于可穿戴生物芯片平台的纳米等离子体方法,了解纳米结构上的近场增强与传感能力之间的相关性是提高生物传感灵敏度的关键步骤。本文展示了一种新颖有效的方法,通过增强电场来提高灵敏度,并通过将侧边预功能化(SEPF)纳米结构阵列转移到柔性基板上实现靶向功能化来降低噪声。纳米结构的侧壁具有用于微小RNA(miRNA)杂交和共振纳米颗粒固定的选择性生化功能末端,从而形成纳米结构与纳米颗粒的异质组装体。这种独特的结构通过等离子体耦合引起的散射光谱红移,在10×10 m水平上实现了对miRNA-21的超灵敏生物传感。这种超灵敏的SEPF纳米结构阵列是使用带有三氯(1H,1H,2H,2H-全氟辛基)硅烷释放层的接触转移印刷法在柔性基板上制造的。在预功能化步骤中引入释放层已证明仅在纳米结构的侧壁上提供选择性功能化。这减少了由基板上非特异性结合的纳米颗粒散射引起的背景噪声,从而实现可靠且精确的检测。