Tyurina Yulia Y, Lou Wenjia, Qu Feng, Tyurin Vladimir A, Mohammadyani Dariush, Liu Jenney, Hüttemann Maik, Frasso Michael A, Wipf Peter, Bayir Hülya, Greenberg Miriam L, Kagan Valerian E
Department of Biological Sciences, Wayne State University , Detroit, Michigan, United States.
Thomas C. Jenkins Department of Biophysics, Johns Hopkins University , Baltimore, Maryland, United States.
ACS Chem Biol. 2017 Jan 20;12(1):265-281. doi: 10.1021/acschembio.6b00995. Epub 2016 Dec 16.
Cardioipins (CLs) are unique tetra-acylated phospholipids of mitochondria and define the bioenergetics and regulatory functions of these organelles. An unresolved paradox is the high uniformity of CL molecular species (tetra-linoleoyl-CL) in the heart, liver, and skeletal muscles-in contrast to their high diversification in the brain. Here, we combined liquid chromatography-mass-spectrometry-based phospholipidomics with genetic and nutritional manipulations to explore CLs' biosynthetic vs postsynthetic remodeling processes in S. cerevisiae yeast cells. By applying the differential phospholipidomics analysis, we evaluated the contribution of Cld1 (CL-specific phospholipase A) and Taz1 (acyl-transferase) as the major regulatory mechanisms of the remodeling process. We further established that nutritional "pressure" by high levels of free fatty acids triggered a massive synthesis of homoacylated molecular species in all classes of phospholipids, resulting in the preponderance of the respective homoacylated CLs. We found that changes in molecular speciation of CLs induced by exogenous C18-fatty acids (C18:1 and C18:2) in wild-type (wt) cells did not occur in any of the remodeling mutant cells, including cld1Δ, taz1Δ, and cld1Δtaz1Δ. Interestingly, molecular speciation of CLs in wt and double mutant cells cld1Δtaz1Δ was markedly different. Given that the bioenergetics functions are preserved in the double mutant, this suggests that the accumulated MLCL-rather than the changed CL speciation-are the likely major contributors to the mitochondrial dysfunction in taz1Δ mutant cells (also characteristic of Barth syndrome). Biochemical studies of Cld1 specificity and computer modeling confirmed the hydrolytic selectivity of the enzyme toward C16-CL substrates and the preservation of C18:1-containing CL species.
心磷脂(CLs)是线粒体特有的四酰化磷脂,决定了这些细胞器的生物能量学和调节功能。一个尚未解决的矛盾是,心脏、肝脏和骨骼肌中CL分子种类(四亚油酰基 - CL)高度一致,而在大脑中却高度多样化。在这里,我们将基于液相色谱 - 质谱的磷脂组学与基因和营养操作相结合,以探索酿酒酵母细胞中CL的生物合成与合成后重塑过程。通过应用差异磷脂组学分析,我们评估了Cld1(CL特异性磷脂酶A)和Taz1(酰基转移酶)作为重塑过程主要调节机制的作用。我们进一步确定,高水平游离脂肪酸产生的营养“压力”会引发所有磷脂类中同酰化分子种类的大量合成,导致相应同酰化CL占优势。我们发现,野生型(wt)细胞中外源C18脂肪酸(C18:1和C18:2)诱导的CL分子种类变化在任何重塑突变细胞中都未发生,包括cld1Δ、taz1Δ和cld1Δtaz1Δ。有趣的是,wt细胞和双突变细胞cld1Δtaz1Δ中CL的分子种类明显不同。鉴于双突变体中生物能量学功能得以保留,这表明积累的单半乳糖基心磷脂酰甘油(MLCL)而非CL种类的改变可能是taz1Δ突变细胞(也是巴氏综合征的特征)中线粒体功能障碍的主要原因。对Cld1特异性的生化研究和计算机建模证实了该酶对C16 - CL底物的水解选择性以及含C18:1的CL种类的保留。