Suppr超能文献

静止状态下的存活需要AGO相关小RNA对Clr4/SUV39H进行常染色质部署。

Survival in Quiescence Requires the Euchromatic Deployment of Clr4/SUV39H by Argonaute-Associated Small RNAs.

作者信息

Joh Richard I, Khanduja Jasbeer S, Calvo Isabel A, Mistry Meeta, Palmieri Christina M, Savol Andrej J, Ho Sui Shannan J, Sadreyev Ruslan I, Aryee Martin J, Motamedi Mo

机构信息

Massachusetts General Hospital Center for Cancer Research and Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA.

Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.

出版信息

Mol Cell. 2016 Dec 15;64(6):1088-1101. doi: 10.1016/j.molcel.2016.11.020.

Abstract

Quiescence (G0) is a ubiquitous stress response through which cells enter reversible dormancy, acquiring distinct properties including reduced metabolism, resistance to stress, and long life. G0 entry involves dramatic changes to chromatin and transcription of cells, but the mechanisms coordinating these processes remain poorly understood. Using the fission yeast, here, we track G0-associated chromatin and transcriptional changes temporally and show that as cells enter G0, their survival and global gene expression programs become increasingly dependent on Clr4/SUV39H, the sole histone H3 lysine 9 (H3K9) methyltransferase, and RNAi proteins. Notably, G0 entry results in RNAi-dependent H3K9 methylation of several euchromatic pockets, prior to which Argonaute1-associated small RNAs from these regions emerge. Overall, our data reveal another function for constitutive heterochromatin proteins (the establishment of the global G0 transcriptional program) and suggest that stress-induced alterations in Argonaute-associated sRNAs can target the deployment of transcriptional regulatory proteins to specific sequences.

摘要

静止期(G0)是一种普遍存在的应激反应,通过这种反应细胞进入可逆性休眠状态,获得包括代谢降低、抗应激能力和长寿等独特特性。进入G0期涉及染色质和细胞转录的显著变化,但协调这些过程的机制仍知之甚少。在此,我们利用裂殖酵母,对与G0相关的染色质和转录变化进行了时间追踪,结果表明,随着细胞进入G0期,它们的存活和全局基因表达程序越来越依赖于Clr4/SUV39H(唯一的组蛋白H3赖氨酸9(H3K9)甲基转移酶)和RNAi蛋白。值得注意的是,进入G0期会导致几个常染色质区域发生RNAi依赖的H3K9甲基化,在此之前,来自这些区域的与AGO1相关的小RNA会出现。总体而言,我们的数据揭示了组成型异染色质蛋白的另一个功能(全局G0转录程序的建立),并表明应激诱导的AGO相关小RNA的改变可以将转录调节蛋白部署到特定序列。

相似文献

1
Survival in Quiescence Requires the Euchromatic Deployment of Clr4/SUV39H by Argonaute-Associated Small RNAs.
Mol Cell. 2016 Dec 15;64(6):1088-1101. doi: 10.1016/j.molcel.2016.11.020.
2
RNA quality control factors nucleate Clr4/SUV39H and trigger constitutive heterochromatin assembly.
Cell. 2024 Jun 20;187(13):3262-3283.e23. doi: 10.1016/j.cell.2024.04.042. Epub 2024 May 29.
3
Unique roles for histone H3K9me states in RNAi and heritable silencing of transcription.
Nature. 2017 Jul 27;547(7664):463-467. doi: 10.1038/nature23267. Epub 2017 Jun 22.
5
Histone H2A.Z cooperates with RNAi and heterochromatin factors to suppress antisense RNAs.
Nature. 2009 Sep 17;461(7262):419-22. doi: 10.1038/nature08321. Epub 2009 Aug 19.
6
Clr4/Suv39 and RNA quality control factors cooperate to trigger RNAi and suppress antisense RNA.
Science. 2011 Mar 25;331(6024):1624-7. doi: 10.1126/science.1198712.
7
Automethylation-induced conformational switch in Clr4 (Suv39h) maintains epigenetic stability.
Nature. 2018 Aug;560(7719):504-508. doi: 10.1038/s41586-018-0398-2. Epub 2018 Jul 23.
8
The methyltransferase activity of Clr4Suv39h triggers RNAi independently of histone H3K9 methylation.
Mol Cell. 2010 Aug 13;39(3):360-72. doi: 10.1016/j.molcel.2010.07.017.
10

引用本文的文献

1
Identification and functional analysis of growth rate associated long non-coding RNAs in .
Comput Struct Biotechnol J. 2025 Apr 22;27:1693-1705. doi: 10.1016/j.csbj.2025.04.028. eCollection 2025.
2
Fission yeast Caprin protein is required for efficient heterochromatin establishment.
PLoS Genet. 2025 Mar 10;21(3):e1011620. doi: 10.1371/journal.pgen.1011620. eCollection 2025 Mar.
5
RNA quality control factors nucleate Clr4/SUV39H and trigger constitutive heterochromatin assembly.
Cell. 2024 Jun 20;187(13):3262-3283.e23. doi: 10.1016/j.cell.2024.04.042. Epub 2024 May 29.
6
Functions of RNAi Pathways in Ribosomal RNA Regulation.
Noncoding RNA. 2024 Mar 29;10(2):19. doi: 10.3390/ncrna10020019.
7
Mathematical model for the role of multiple pericentromeric repeats on heterochromatin assembly.
PLoS Comput Biol. 2024 Apr 10;20(4):e1012027. doi: 10.1371/journal.pcbi.1012027. eCollection 2024 Apr.
8
The longevity and reversibility of quiescence in are dependent upon the HIRA histone chaperone.
Cell Cycle. 2023 Sep;22(17):1921-1936. doi: 10.1080/15384101.2023.2249705. Epub 2023 Aug 27.
9
Comparative Research: Regulatory Mechanisms of Ribosomal Gene Transcription in and .
Biomolecules. 2023 Feb 3;13(2):288. doi: 10.3390/biom13020288.
10
Facultative heterochromatin formation in rDNA is essential for cell survival during nutritional starvation.
Nucleic Acids Res. 2022 Apr 22;50(7):3727-3744. doi: 10.1093/nar/gkac175.

本文引用的文献

1
RNA interference is essential for cellular quiescence.
Science. 2016 Nov 11;354(6313). doi: 10.1126/science.aah5651. Epub 2016 Oct 13.
2
Nuclear Noncoding RNAs and Genome Stability.
Mol Cell. 2016 Jul 7;63(1):7-20. doi: 10.1016/j.molcel.2016.06.011.
3
Regulation of Skeletal Muscle Stem Cell Quiescence by Suv4-20h1-Dependent Facultative Heterochromatin Formation.
Cell Stem Cell. 2016 Feb 4;18(2):229-42. doi: 10.1016/j.stem.2015.11.002. Epub 2015 Dec 5.
4
Conserved factor Dhp1/Rat1/Xrn2 triggers premature transcription termination and nucleates heterochromatin to promote gene silencing.
Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15548-55. doi: 10.1073/pnas.1522127112. Epub 2015 Dec 2.
5
Rrp6: Integrated roles in nuclear RNA metabolism and transcription termination.
Wiley Interdiscip Rev RNA. 2016 Jan-Feb;7(1):91-104. doi: 10.1002/wrna.1317. Epub 2015 Nov 26.
6
Global Promoter Targeting of a Conserved Lysine Deacetylase for Transcriptional Shutoff during Quiescence Entry.
Mol Cell. 2015 Sep 3;59(5):732-43. doi: 10.1016/j.molcel.2015.07.014. Epub 2015 Aug 20.
7
RNAi and heterochromatin assembly.
Cold Spring Harb Perspect Biol. 2015 Aug 3;7(8):a019323. doi: 10.1101/cshperspect.a019323.
8
Small-RNA loading licenses Argonaute for assembly into a transcriptional silencing complex.
Nat Struct Mol Biol. 2015 Apr;22(4):328-35. doi: 10.1038/nsmb.2979. Epub 2015 Mar 2.
9
RNA-mediated epigenetic regulation of gene expression.
Nat Rev Genet. 2015 Feb;16(2):71-84. doi: 10.1038/nrg3863. Epub 2015 Jan 2.
10
Stress-induced nuclear RNA degradation pathways regulate yeast bromodomain factor 2 to promote cell survival.
PLoS Genet. 2014 Sep 18;10(9):e1004661. doi: 10.1371/journal.pgen.1004661. eCollection 2014 Sep.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验