Banerjee Puja, Yashonath Subramanian, Bagchi Biman
Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India.
J Chem Phys. 2016 Dec 21;145(23):234502. doi: 10.1063/1.4971864.
A nitrate ion (NO) with its trigonal planar geometry and charges distributed among nitrogen and oxygen atoms can couple to the extensive hydrogen bond network of water to give rise to unique dynamical characteristics. We carry out detailed atomistic simulations and theoretical analyses to investigate these aspects and report certain interesting findings. We find that the nitrate ions in aqueous potassium nitrate solution exhibit large amplitude rotational jump motions that are coupled to the hydrogen bond rearrangement dynamics of the surrounding water molecules. The jump motion of nitrate ions bears certain similarities to the Laage-Hynes mechanism of rotational jump motions of tagged water molecules in neat liquid water. We perform a detailed atomic-level investigation of hydrogen bond rearrangement dynamics of water in aqueous KNO solution to unearth two distinct mechanisms of hydrogen bond exchange that are instrumental to promote these jump motions of nitrate ions. As observed in an earlier study by Xie et al., in the first mechanism, after breaking a hydrogen bond with nitrate ion, water forms a new hydrogen bond with a water molecule, whereas the second mechanism involves just a switching of hydrogen bond between the two oxygen atoms of the same nitrate ion (W. J. Xie et al., J. Chem. Phys. 143, 224504 (2015)). The magnitude as well as nature of the reorientational jump of nitrate ion for the two mechanisms is different. In the first mechanism, nitrate ion predominantly undergoes out-of-plane rotation, while in the second mechanism, in-plane reorientation of NO is favourable. These have been deduced by computing the torque on the nitrate ion during the hydrogen bond switching event. We have defined and computed the time correlation function for coupled reorientational jump of nitrate and water and obtained the associated relaxation time which is also different for the two mechanisms. These results provide insight into the relation between the coupled reorientational jump dynamics of solute and solvent molecules.
硝酸根离子(NO₃⁻)具有三角平面几何结构,其电荷分布在氮原子和氧原子之间,它可以与水广泛的氢键网络耦合,从而产生独特的动力学特性。我们进行了详细的原子模拟和理论分析来研究这些方面,并报告了一些有趣的发现。我们发现硝酸钾水溶液中的硝酸根离子表现出大幅度的旋转跳跃运动,这些运动与周围水分子的氢键重排动力学相关联。硝酸根离子的跳跃运动与纯液态水中标记水分子旋转跳跃运动的拉格 - 海因斯机制有一定相似性。我们对硝酸钾水溶液中水的氢键重排动力学进行了详细的原子水平研究,以揭示促进硝酸根离子这些跳跃运动的两种不同的氢键交换机制。正如谢等人早期研究中所观察到的,在第一种机制中,水与硝酸根离子断开氢键后,会与另一个水分子形成新的氢键,而第二种机制仅涉及同一硝酸根离子的两个氧原子之间氢键的切换(W. J. 谢等人,《化学物理杂志》143, 224504 (2015))。两种机制下硝酸根离子重新定向跳跃的幅度和性质不同。在第一种机制中,硝酸根离子主要进行平面外旋转,而在第二种机制中,硝酸根离子的平面内重新定向更有利。这些是通过计算氢键切换事件中硝酸根离子上的扭矩推导出来的。我们定义并计算了硝酸根离子和水耦合重新定向跳跃的时间关联函数,并得到了相关的弛豫时间,两种机制下的弛豫时间也不同。这些结果为溶质和溶剂分子的耦合重新定向跳跃动力学之间的关系提供了深入见解。