CNRS, Laboratoire de Chimie et Biologie des Métaux (LCBM) UMR 5249 CNRS-CEA-UGA, F-38054 Grenoble, France; CEA, LCBM, F-38054 Grenoble, France; Université Grenoble Alpes, LCBM, F-38054 Grenoble, France.
CNRS, Laboratoire de Chimie et Biologie des Métaux (LCBM) UMR 5249 CNRS-CEA-UGA, F-38054 Grenoble, France; CEA, LCBM, F-38054 Grenoble, France; Université Grenoble Alpes, LCBM, F-38054 Grenoble, France; ESRF, The European Synchrotron, 71, Avenue des Martyrs, 38043 Grenoble, France.
Biochim Biophys Acta Gen Subj. 2017 Jun;1861(6):1566-1577. doi: 10.1016/j.bbagen.2016.12.012. Epub 2016 Dec 16.
The use of nanomaterials is constantly increasing in electronics, cosmetics, food additives, and is emerging in advanced biomedical applications such as theranostics, bio-imaging and therapeutics. However their safety raises concerns and requires appropriate methods to analyze their fate in vivo.
In this review, we describe the current knowledge about the toxicity of labile metal (ZnO, CuO and Ag) nanoparticles (NPs) both at the organism and cellular levels, and describe the pathways that are triggered to maintain cellular homeostasis. We also describe advanced elemental imaging approaches to analyze intracellular NP fate. Finally, we open the discussion by presenting recent developments in terms of synthesis and applications of Ag and CuO NPs.
Labile metal nanoparticles (MeNPs) release metal ions that trigger a cellular response involving biomolecules binding to the ions followed by regulation of the redox balance. In addition, specific mechanisms are set up by the cell in response to physiological ions such as Cu(I) and Zn(II). Among all types of NPs, labile MeNPs induce the strongest inflammatory responses which are most probably due to the combined effects of the NPs and of its released ions. Interestingly, recent developments in imaging technologies enable the intracellular visualization of both the NPs and their ions and promise new insights into nanoparticle fate and toxicity.
The exponential use of nanotechnologies associated with the difficulties of assessing their impact on health and the environment has prompted scientists to develop novel methodologies to characterize these nanoobjects in a biological context.
纳米材料在电子、化妆品、食品添加剂中的应用不断增加,并且在先进的生物医学应用中也崭露头角,如治疗学、生物成像和治疗。然而,它们的安全性引起了人们的关注,需要适当的方法来分析它们在体内的命运。
在这篇综述中,我们描述了目前关于不稳定金属(ZnO、CuO 和 Ag)纳米颗粒(NPs)在机体和细胞水平上的毒性的知识,并描述了触发以维持细胞内稳态的途径。我们还描述了用于分析细胞内 NP 命运的先进元素成像方法。最后,我们通过介绍 Ag 和 CuO NPs 的合成和应用方面的最新进展来展开讨论。
不稳定金属纳米颗粒(MeNPs)释放金属离子,引发细胞反应,涉及生物分子与离子结合,随后调节氧化还原平衡。此外,细胞还会针对生理离子(如 Cu(I)和 Zn(II))建立特定的机制。在所有类型的 NPs 中,不稳定的 MeNPs 引起最强的炎症反应,这很可能是由于 NPs 及其释放的离子的共同作用。有趣的是,成像技术的最新发展使我们能够在细胞内可视化 NPs 及其离子,并有望为纳米颗粒的命运和毒性提供新的见解。
纳米技术的指数级应用与评估其对健康和环境影响的困难促使科学家们开发新的方法来在生物环境中对这些纳米物体进行表征。