Suppr超能文献

EGAD:基因网络的超快速功能分析

EGAD: ultra-fast functional analysis of gene networks.

作者信息

Ballouz Sara, Weber Melanie, Pavlidis Paul, Gillis Jesse

机构信息

Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Woodbury, NY 11797, USA.

Department of Mathematics and Computer Science, University of Leipzig, Leipzig, Germany.

出版信息

Bioinformatics. 2017 Feb 15;33(4):612-614. doi: 10.1093/bioinformatics/btw695.

Abstract

SUMMARY

Evaluating gene networks with respect to known biology is a common task but often a computationally costly one. Many computational experiments are difficult to apply exhaustively in network analysis due to run-times. To permit high-throughput analysis of gene networks, we have implemented a set of very efficient tools to calculate functional properties in networks based on guilt-by-association methods. ( xtending ' uilt-by- ssociation' by egree) allows gene networks to be evaluated with respect to hundreds or thousands of gene sets. The methods predict novel members of gene groups, assess how well a gene network groups known sets of genes, and determines the degree to which generic predictions drive performance. By allowing fast evaluations, whether of random sets or real functional ones, provides the user with an assessment of performance which can easily be used in controlled evaluations across many parameters.

AVAILABILITY AND IMPLEMENTATION

The software package is freely available at https://github.com/sarbal/EGAD and implemented for use in R and Matlab. The package is also freely available under the LGPL license from the Bioconductor web site ( http://bioconductor.org ).

CONTACT

JGillis@cshl.edu.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

摘要

根据已知生物学知识评估基因网络是一项常见任务,但通常计算成本很高。由于运行时间的原因,许多计算实验难以在网络分析中全面应用。为了实现基因网络的高通量分析,我们基于“关联有罪”方法实现了一套非常高效的工具来计算网络中的功能特性。(按度扩展“关联有罪”)允许针对数百或数千个基因集评估基因网络。这些方法可预测基因组成员、评估基因网络对已知基因集的分组效果,并确定一般预测对性能的驱动程度。通过允许快速评估,无论是随机集还是实际功能集,都能为用户提供性能评估,可轻松用于跨多个参数的对照评估。

可用性与实现

该软件包可在https://github.com/sarbal/EGAD上免费获取,并已实现可在R和Matlab中使用。该软件包也可根据LGPL许可从Bioconductor网站(http://bioconductor.org)免费获取。

联系方式

JGillis@cshl.edu

补充信息

补充数据可在《生物信息学》在线获取。

相似文献

1
EGAD: ultra-fast functional analysis of gene networks.EGAD:基因网络的超快速功能分析
Bioinformatics. 2017 Feb 15;33(4):612-614. doi: 10.1093/bioinformatics/btw695.
6
GSA-Lightning: ultra-fast permutation-based gene set analysis.GSA-Lightning:超快速基于排列的基因集分析。
Bioinformatics. 2016 Oct 1;32(19):3029-31. doi: 10.1093/bioinformatics/btw349. Epub 2016 Jun 13.
7
MOCCASIN: converting MATLAB ODE models to SBML.MOCCASIN:将MATLAB常微分方程模型转换为系统生物学标记语言模型。
Bioinformatics. 2016 Jun 15;32(12):1905-6. doi: 10.1093/bioinformatics/btw056. Epub 2016 Feb 9.

引用本文的文献

本文引用的文献

1
Positive and negative forms of replicability in gene network analysis.基因网络分析中的可重复性的正、负形式。
Bioinformatics. 2016 Apr 1;32(7):1065-73. doi: 10.1093/bioinformatics/btv734. Epub 2015 Dec 14.
6
A large-scale evaluation of computational protein function prediction.大规模计算蛋白质功能预测评估。
Nat Methods. 2013 Mar;10(3):221-7. doi: 10.1038/nmeth.2340. Epub 2013 Jan 27.
7
The role of indirect connections in gene networks in predicting function.基因网络中间接连接在预测功能中的作用。
Bioinformatics. 2011 Jul 1;27(13):1860-6. doi: 10.1093/bioinformatics/btr288. Epub 2011 May 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验