de Los Cobos Felipe Pérez, García-Gómez Beatriz E, Orduña-Rubio Luis, Batlle Ignasi, Arús Pere, Matus José Tomás, Eduardo Iban
Institut de Recerca i Tecnologia Agroalimentàries (IRTA) , Mas Bové, Ctra. Reus-El Morell Km 3,8 43120 Constantí Tarragona, Spain.
Centre de Recerca en Agrigenòmica (CRAG), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), CSIC-IRTA-UAB-UB. Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain.
Hortic Res. 2024 Jan 2;11(2):uhad294. doi: 10.1093/hr/uhad294. eCollection 2024 Feb.
Peach is a model for genetics and genomics, however, identifying and validating genes associated to peach breeding traits is a complex task. A gene coexpression network (GCN) capable of capturing stable gene-gene relationships would help researchers overcome the intrinsic limitations of peach genetics and genomics approaches and outline future research opportunities. In this study, we created four GCNs from 604 Illumina RNA-Seq libraries. We evaluated the performance of every GCN in predicting functional annotations using an algorithm based on the 'guilty-by-association' principle. The GCN with the best performance was COO300, encompassing 21 956 genes. To validate its performance predicting gene function, we performed two case studies. In case study 1, we used two genes involved in fruit flesh softening: the endopolygalacturonases and . Genes coexpressing with both genes were extracted and referred to as melting flesh (MF) network. Finally, we performed an enrichment analysis of MF network and compared the results with the current knowledge regarding peach fruit softening. The MF network mostly included genes involved in cell wall expansion and remodeling, and with expressions triggered by ripening-related phytohormones, such as ethylene, auxin, and methyl jasmonate. In case study 2, we explored potential targets of the anthocyanin regulator PpMYB10.1 by comparing its gene-centered coexpression network with that of its grapevine orthologues, identifying a common regulatory network. These results validated COO300 as a powerful tool for peach and research. This network, renamed as PeachGCN v1.0, and the scripts required to perform a function prediction analysis are available at https://github.com/felipecobos/PeachGCN.
桃子是遗传学和基因组学的一个模型,然而,识别和验证与桃子育种性状相关的基因是一项复杂的任务。一个能够捕捉稳定基因-基因关系的基因共表达网络(GCN)将有助于研究人员克服桃子遗传学和基因组学方法的内在局限性,并勾勒出未来的研究机会。在本研究中,我们从604个Illumina RNA-Seq文库创建了四个GCN。我们使用基于“关联有罪”原则的算法评估了每个GCN在预测功能注释方面的性能。性能最佳的GCN是COO300,包含21956个基因。为了验证其预测基因功能的性能,我们进行了两个案例研究。在案例研究1中,我们使用了两个参与果肉软化的基因:内切多聚半乳糖醛酸酶和。提取与这两个基因共表达的基因,并将其称为融肉(MF)网络。最后,我们对MF网络进行了富集分析,并将结果与当前关于桃子果实软化的知识进行了比较。MF网络主要包括参与细胞壁扩张和重塑的基因,其表达由与成熟相关的植物激素如乙烯、生长素和茉莉酸甲酯触发。在案例研究2中,我们通过比较花青素调节因子PpMYB10.1以基因为中心的共表达网络与其葡萄直系同源基因的共表达网络,探索了其潜在靶点,识别出一个共同的调控网络。这些结果验证了COO300作为桃子和研究的强大工具。这个网络重新命名为PeachGCN v1.0,以及执行功能预测分析所需的脚本可在https://github.com/felipecobos/PeachGCN获得。