Crum Dax M, Bouhassoune Mohammed, Bouaziz Juba, Schweflinghaus Benedikt, Blügel Stefan, Lounis Samir
Microelectronics Research Center, The University of Texas at Austin, 10100 Burnet Road, Austin, Texas 78758, USA.
Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, D-52425 Jülich, Germany.
Nat Commun. 2015 Oct 16;6:8541. doi: 10.1038/ncomms9541.
Thin-film sub-5 nm magnetic skyrmions constitute an ultimate scaling alternative for future digital data storage. Skyrmions are robust noncollinear spin textures that can be moved and manipulated by small electrical currents. Here we show here a technique to detect isolated nanoskyrmions with a current perpendicular-to-plane geometry, which has immediate implications for device concepts. We explore the physics behind such a mechanism by studying the atomistic electronic structure of the magnetic quasiparticles. We investigate from first principles how the isolated skyrmion local-density-of-states which tunnels into the vacuum, when compared with the ferromagnetic background, is modified by the site-dependent spin mixing of electronic states with different relative canting angles. Local transport properties are sensitive to this effect, as we report an atomistic conductance anisotropy of up to ∼20% for magnetic skyrmions in Pd/Fe/Ir(111) thin films. In single skyrmions, engineering this spin-mixing magnetoresistance could possibly be incorporated in future magnetic storage technologies.
厚度小于5纳米的薄膜磁性斯格明子构成了未来数字数据存储的终极缩放替代方案。斯格明子是稳健的非共线自旋纹理,可通过小电流进行移动和操控。在此,我们展示了一种利用电流垂直于平面的几何结构来检测孤立纳米斯格明子的技术,这对器件概念具有直接影响。我们通过研究磁性准粒子的原子电子结构来探索这种机制背后的物理原理。我们从第一性原理出发,研究与铁磁背景相比,当具有不同相对倾斜角度的电子态的位点相关自旋混合改变时,隧穿到真空中的孤立斯格明子的局域态密度是如何变化的。正如我们报道的,Pd/Fe/Ir(111)薄膜中磁性斯格明子的原子电导各向异性高达约20%,局部输运性质对这种效应很敏感。在单个斯格明子中,设计这种自旋混合磁电阻可能会被纳入未来的磁存储技术中。