Suppr超能文献

利用死亡证明上的文字信息提升死亡率统计:描述药物在死亡事件中的作用。

Using Literal Text From the Death Certificate to Enhance Mortality Statistics: Characterizing Drug Involvement in Deaths.

作者信息

Trinidad James P, Warner Margaret, Bastian Brigham A, Minino Arialdi M, Hedegaard Holly

出版信息

Natl Vital Stat Rep. 2016 Dec;65(9):1-15.

Abstract

Objectives-This report describes the development and use of a method for analyzing the literal text from death certificates to enhance national mortality statistics on drug-involved deaths. Drug-involved deaths include drug overdose deaths as well as other deaths where, according to death certificate literal text, drugs were associated with or contributed to the death. Methods-The method uses final National Vital Statistics System-Mortality files linked to electronic files containing literal text information from death certificates. Software programs were designed to search the literal text from three fields of the death certificate (the cause of death from Part I, significant conditions contributing to the death from Part II, and a description of how the injury occurred from Box 43) to identify drug mentions as well as contextual information. The list of drug search terms was developed from existing drug classification systems as well as from manual review of the literal text. Literal text surrounding the identified drug search terms was analyzed to ascertain the context. Drugs mentioned in the death certificate literal text were assumed to be involved in the death unless contextual information suggested otherwise (e.g., "METHICILLIN RESISTANT STAPHYLOCOCCUS AUREUS INFECTION"). The literal text analysis method was assessed by comparing the results from application of the method with results based on ICD-10 codes, and by conducting a manual review of a sample of records.

摘要

目标——本报告描述了一种用于分析死亡证明文字文本的方法的开发和应用,以改进涉及药物死亡的国家死亡率统计数据。涉及药物死亡包括药物过量死亡以及根据死亡证明文字文本显示药物与死亡相关或导致死亡的其他死亡情况。方法——该方法使用与包含死亡证明文字文本信息的电子文件相链接的国家生命统计系统最终死亡率文件。设计了软件程序来搜索死亡证明三个字段中的文字文本(第一部分的死因、第二部分导致死亡的重要情况以及第43栏中伤害发生方式的描述),以识别提及的药物以及相关背景信息。药物搜索词列表是根据现有的药物分类系统以及对文字文本的人工审查制定的。对识别出的药物搜索词周围的文字文本进行分析以确定背景情况。除非背景信息另有提示(例如,“耐甲氧西林金黄色葡萄球菌感染”),否则死亡证明文字文本中提及的药物被假定与死亡有关。通过将该方法应用的结果与基于国际疾病分类第十版(ICD-10)编码的结果进行比较,并对样本记录进行人工审查,对文字文本分析方法进行了评估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验