Li Yunlei, Buijs-Gladdines Jessica G C A M, Canté-Barrett Kirsten, Stubbs Andrew P, Vroegindeweij Eric M, Smits Willem K, van Marion Ronald, Dinjens Winand N M, Horstmann Martin, Kuiper Roland P, Buijsman Rogier C, Zaman Guido J R, van der Spek Peter J, Pieters Rob, Meijerink Jules P P
Department of Pediatric Oncology/Hematology, Erasmus Medical Center/Sophia Children's Hospital, Rotterdam, The Netherlands.
Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
PLoS Med. 2016 Dec 20;13(12):e1002200. doi: 10.1371/journal.pmed.1002200. eCollection 2016 Dec.
Pediatric acute lymphoblastic leukemia (ALL) is the most common childhood cancer and the leading cause of cancer-related mortality in children. T cell ALL (T-ALL) represents about 15% of pediatric ALL cases and is considered a high-risk disease. T-ALL is often associated with resistance to treatment, including steroids, which are currently the cornerstone for treating ALL; moreover, initial steroid response strongly predicts survival and cure. However, the cellular mechanisms underlying steroid resistance in T-ALL patients are poorly understood. In this study, we combined various genomic datasets in order to identify candidate genetic mechanisms underlying steroid resistance in children undergoing T-ALL treatment.
We performed whole genome sequencing on paired pre-treatment (diagnostic) and post-treatment (remission) samples from 13 patients, and targeted exome sequencing of pre-treatment samples from 69 additional T-ALL patients. We then integrated mutation data with copy number data for 151 mutated genes, and this integrated dataset was tested for associations of mutations with clinical outcomes and in vitro drug response. Our analysis revealed that mutations in JAK1 and KRAS, two genes encoding components of the interleukin 7 receptor (IL7R) signaling pathway, were associated with steroid resistance and poor outcome. We then sequenced JAK1, KRAS, and other genes in this pathway, including IL7R, JAK3, NF1, NRAS, and AKT, in these 69 T-ALL patients and a further 77 T-ALL patients. We identified mutations in 32% (47/146) of patients, the majority of whom had a specific T-ALL subtype (early thymic progenitor ALL or TLX). Based on the outcomes of these patients and their prednisolone responsiveness measured in vitro, we then confirmed that these mutations were associated with both steroid resistance and poor outcome. To explore how these mutations in IL7R signaling pathway genes cause steroid resistance and subsequent poor outcome, we expressed wild-type and mutant IL7R signaling molecules in two steroid-sensitive T-ALL cell lines (SUPT1 and P12 Ichikawa cells) using inducible lentiviral expression constructs. We found that expressing mutant IL7R, JAK1, or NRAS, or wild-type NRAS or AKT, specifically induced steroid resistance without affecting sensitivity to vincristine or L-asparaginase. In contrast, wild-type IL7R, JAK1, and JAK3, as well as mutant JAK3 and mutant AKT, had no effect. We then performed a functional study to examine the mechanisms underlying steroid resistance and found that, rather than changing the steroid receptor's ability to activate downstream targets, steroid resistance was associated with strong activation of MEK-ERK and AKT, downstream components of the IL7R signaling pathway, thereby inducing a robust antiapoptotic response by upregulating MCL1 and BCLXL expression. Both the MEK-ERK and AKT pathways also inactivate BIM, an essential molecule for steroid-induced cell death, and inhibit GSK3B, an important regulator of proapoptotic BIM. Importantly, treating our cell lines with IL7R signaling inhibitors restored steroid sensitivity. To address clinical relevance, we treated primary T-ALL cells obtained from 11 patients with steroids either alone or in combination with IL7R signaling inhibitors; we found that including a MEK, AKT, mTOR, or dual PI3K/mTOR inhibitor strongly increased steroid-induced cell death. Therefore, combining these inhibitors with steroid treatment may enhance steroid sensitivity in patients with ALL. The main limitation of our study was the modest cohort size, owing to the very low incidence of T-ALL.
Using an unbiased sequencing approach, we found that specific mutations in IL7R signaling molecules underlie steroid resistance in T-ALL. Future prospective clinical studies should test the ability of inhibitors of MEK, AKT, mTOR, or PI3K/mTOR to restore or enhance steroid sensitivity and improve clinical outcome.
小儿急性淋巴细胞白血病(ALL)是儿童期最常见的癌症,也是儿童癌症相关死亡的主要原因。T细胞ALL(T-ALL)约占小儿ALL病例的15%,被认为是一种高危疾病。T-ALL常与对治疗的耐药性相关,包括对目前治疗ALL的基石——类固醇的耐药;此外,初始类固醇反应强烈预测生存和治愈情况。然而,T-ALL患者中类固醇耐药的细胞机制尚不清楚。在本研究中,我们整合了各种基因组数据集,以确定接受T-ALL治疗的儿童中类固醇耐药的潜在遗传机制。
我们对13例患者的配对预处理(诊断)和治疗后(缓解)样本进行了全基因组测序,并对另外69例T-ALL患者的预处理样本进行了靶向外显子组测序。然后,我们将151个突变基因的突变数据与拷贝数数据整合,对该整合数据集测试突变与临床结局及体外药物反应的相关性。我们的分析显示,编码白细胞介素7受体(IL7R)信号通路成分的两个基因JAK1和KRAS中的突变与类固醇耐药和不良结局相关。然后,我们对这69例T-ALL患者和另外77例T-ALL患者的JAK1、KRAS以及该通路中的其他基因,包括IL7R、JAK3、NF1、NRAS和AKT进行了测序。我们在32%(47/146)的患者中发现了突变,其中大多数患者具有特定的T-ALL亚型(早期胸腺祖细胞ALL或TLX)。根据这些患者的结局及其体外泼尼松龙反应性,我们随后证实这些突变与类固醇耐药和不良结局均相关。为了探究IL7R信号通路基因中的这些突变如何导致类固醇耐药及随后的不良结局,我们使用可诱导的慢病毒表达构建体在两种类固醇敏感的T-ALL细胞系(SUPT1和P12市川细胞)中表达野生型和突变型IL7R信号分子。我们发现,表达突变型IL7R、JAK1或NRAS,或野生型NRAS或AKT,特异性诱导类固醇耐药,而不影响对长春新碱或L-天冬酰胺酶的敏感性。相比之下,野生型IL7R、JAK1和JAK3,以及突变型JAK3和突变型AKT则没有影响。然后,我们进行了一项功能研究,以检查类固醇耐药的潜在机制,发现类固醇耐药与IL7R信号通路的下游成分MEK-ERK和AKT的强烈激活相关,而不是改变类固醇受体激活下游靶点的能力,从而通过上调MCL1和BCLXL表达诱导强大的抗凋亡反应。MEK-ERK和AKT通路还使类固醇诱导的细胞死亡所必需的分子BIM失活,并抑制促凋亡BIM的重要调节因子GSK3B。重要的是,用IL7R信号抑制剂处理我们的细胞系可恢复类固醇敏感性。为了解决临床相关性问题,我们用类固醇单独或与IL7R信号抑制剂联合处理从11例患者获得的原发性T-ALL细胞;我们发现,加入MEK、AKT、mTOR或双PI3K/mTOR抑制剂可强烈增加类固醇诱导的细胞死亡。因此,将这些抑制剂与类固醇治疗联合使用可能会增强ALL患者的类固醇敏感性。我们研究的主要局限性是队列规模较小,这是由于T-ALL的发病率非常低。
使用无偏倚测序方法,我们发现IL7R信号分子中的特定突变是T-ALL类固醇耐药的基础。未来的前瞻性临床研究应测试MEK、AKT、mTOR或PI3K/mTOR抑制剂恢复或增强类固醇敏感性并改善临床结局的能力。