SuperSTEM Laboratory, SFTC Daresbury Campus , Keckwick Lane, Daresbury WA4 4AD, United Kingdom.
Cardiff Catalysis Institute, School of Chemistry, Cardiff University , Park Place, Cardiff CF10 3AT, United Kingdom.
Nano Lett. 2017 Feb 8;17(2):687-694. doi: 10.1021/acs.nanolett.6b03699. Epub 2017 Jan 3.
Selecting the electrical properties of nanomaterials is essential if their potential as manufacturable devices is to be reached. Here, we show that the addition or removal of native semiconductor material at the edge of a nanocontact can be used to determine the electrical transport properties of metal-nanowire interfaces. While the transport properties of as-grown Au nanocatalyst contacts to semiconductor nanowires are well-studied, there are few techniques that have been explored to modify the electrical behavior. In this work, we use an iterative analytical process that directly correlates multiprobe transport measurements with subsequent aberration-corrected scanning transmission electron microscopy to study the effects of chemical processes that create structural changes at the contact interface edge. A strong metal-support interaction that encapsulates the Au nanocontacts over time, adding ZnO material to the edge region, gives rise to ohmic transport behavior due to the enhanced quantum-mechanical tunneling path. Removal of the extraneous material at the Au-nanowire interface eliminates the edge-tunneling path, producing a range of transport behavior that is dependent on the final interface quality. These results demonstrate chemically driven processes that can be factored into nanowire-device design to select the final properties.
如果要充分发挥纳米材料作为可制造器件的潜力,选择其电学性能至关重要。在这里,我们展示了可以通过在纳米接触的边缘添加或去除本征半导体材料来确定金属-纳米线界面的电学传输特性。虽然对于生长的 Au 纳米催化剂与半导体纳米线的接触的传输特性已经进行了广泛研究,但很少有技术被探索来修饰其电学行为。在这项工作中,我们使用迭代分析过程,直接将多探针传输测量与随后的具有像差校正的扫描透射电子显微镜相关联,以研究在接触界面边缘处创建结构变化的化学过程的影响。随着时间的推移,强烈的金属-载体相互作用将 Au 纳米接触包裹起来,向边缘区域添加 ZnO 材料,由于增强的量子力学隧道路径,导致出现欧姆传输行为。从 Au-纳米线界面去除多余的材料消除了边缘隧道路径,产生了一系列依赖于最终界面质量的传输行为。这些结果证明了可以在纳米线器件设计中考虑化学驱动过程,以选择最终的性能。