Suppr超能文献

使用乙酰丙酮和氧等离子体对氧化锌进行各向同性原子层蚀刻。

Isotropic Atomic Layer Etching of ZnO Using Acetylacetone and O Plasma.

作者信息

Mameli A, Verheijen M A, Mackus A J M, Kessels W M M, Roozeboom F

机构信息

Department of Applied Physics , Eindhoven University of Technology , P.O. Box 513, Eindhoven 5600 MB , The Netherlands.

TNO-Holst Centre , High Tech Campus 21 , Eindhoven 5656 AE , The Netherlands.

出版信息

ACS Appl Mater Interfaces. 2018 Nov 7;10(44):38588-38595. doi: 10.1021/acsami.8b12767. Epub 2018 Oct 23.

Abstract

Atomic layer etching (ALE) provides Ångström-level control over material removal and holds potential for addressing the challenges in nanomanufacturing faced by conventional etching techniques. Recent research has led to the development of two main classes of ALE: ion-driven plasma processes yielding anisotropic (or directional) etch profiles and thermally driven processes for isotropic material removal. In this work, we extend the possibilities to obtain isotropic etching by introducing a plasma-based ALE process for ZnO which is radical-driven and utilizes acetylacetone (Hacac) and O plasma as reactants. In situ spectroscopic ellipsometry measurements indicate self-limiting half-reactions with etch rates ranging from 0.5 to 1.3 Å/cycle at temperatures between 100 and 250 °C. The ALE process was demonstrated on planar and three-dimensional substrates consisting of a regular array of semiconductor nanowires (NWs) conformally covered using atomic layer deposition of ZnO. Transmission electron microscopy studies conducted on the ZnO-covered NWs before and after ALE proved the isotropic nature and the damage-free characteristics of the process. In situ infrared spectroscopy measurements were used to elucidate the self-limiting nature of the ALE half-reactions and the reaction mechanism. During the Hacac etching reaction that is assumed to produce Zn(acac), carbonaceous species adsorbed on the ZnO surface are suggested as the cause of the self-limiting behavior. The subsequent O plasma step resets the surface for the next ALE cycle. High etch selectivities (∼80:1) over SiO and HfO were demonstrated. Preliminary results indicate that the etching process can be extended to other oxides such as AlO.

摘要

原子层蚀刻(ALE)可实现对材料去除的埃级控制,并有望解决传统蚀刻技术在纳米制造中面临的挑战。最近的研究促成了两类主要的ALE的发展:离子驱动的等离子体工艺可产生各向异性(或定向)蚀刻轮廓,以及热驱动工艺用于各向同性材料去除。在这项工作中,我们通过引入一种基于等离子体的ZnO ALE工艺扩展了获得各向同性蚀刻的可能性,该工艺由自由基驱动,使用乙酰丙酮(Hacac)和O等离子体作为反应物。原位光谱椭偏测量表明存在自限制半反应,在100至250°C的温度下蚀刻速率范围为0.5至1.3 Å/周期。在由通过ZnO原子层沉积共形覆盖的半导体纳米线(NWs)规则阵列组成的平面和三维衬底上展示了ALE工艺。对ALE前后覆盖ZnO的NWs进行的透射电子显微镜研究证明了该工艺的各向同性性质和无损伤特性。原位红外光谱测量用于阐明ALE半反应的自限制性质和反应机理。在假定产生Zn(acac)的Hacac蚀刻反应过程中,吸附在ZnO表面的碳质物种被认为是自限制行为的原因。随后的O等离子体步骤为下一个ALE循环重置表面。展示了对SiO和HfO的高蚀刻选择性(约80:1)。初步结果表明蚀刻工艺可扩展到其他氧化物,如AlO。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验