School of Physics, University of New South Wales , Sydney, NSW 2052, Australia.
Walter Schottky Institut, Technische Universität München , Am Coulombwall 4, Garching 85748, Germany.
Nano Lett. 2017 Feb 8;17(2):827-833. doi: 10.1021/acs.nanolett.6b04075. Epub 2017 Jan 5.
A key task in the emerging field of bioelectronics is the transduction between ionic/protonic and electronic signals at high fidelity. This is a considerable challenge since the two carrier types exhibit intrinsically different physics and are best supported by very different materials types-electronic signals in inorganic semiconductors and ionic/protonic signals in organic or bio-organic polymers, gels, or electrolytes. Here we demonstrate a new class of organic-inorganic transducing interface featuring semiconducting nanowires electrostatically gated using a solid proton-transporting hygroscopic polymer. This model platform allows us to study the basic transducing mechanisms as well as deliver high fidelity signal conversion by tapping into and drawing together the best candidates from traditionally disparate realms of electronic materials research. By combining complementary n- and p-type transducers we demonstrate functional logic with significant potential for scaling toward high-density integrated bioelectronic circuitry.
生物电子学这一新兴领域的一个关键任务是在高保真度下实现离子/质子和电子信号之间的转换。这是一项相当大的挑战,因为这两种载体类型具有内在不同的物理性质,并且最好由非常不同的材料类型来支持——无机半导体中的电子信号和有机或生物有机聚合物、凝胶或电解质中的离子/质子信号。在这里,我们展示了一类新的有机-无机转换接口,其特点是使用固态质子传输吸湿聚合物静电门控的半导体纳米线。这个模型平台使我们能够通过从传统上电子材料研究的不同领域中挑选最佳候选材料,研究基本的转换机制并实现高保真信号转换。通过结合互补的 n 型和 p 型换能器,我们展示了具有显著潜力的功能逻辑,可以朝着高密度集成生物电子电路的方向发展。